Trace formula for the magnetic Laplacian at zero energy level
- Authors: Kordyukov Y.A.1
- 
							Affiliations: 
							- Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences
 
- Issue: Vol 77, No 6 (2022)
- Pages: 159-202
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/142325
- DOI: https://doi.org/10.4213/rm10078
- ID: 142325
Cite item
Abstract
About the authors
Yuri Arkadevich Kordyukov
Institute of Mathematics with Computing Centre, Ufa Federal Research Centre, Russian Academy of Sciences
														Email: yurikor@matem.anrb.ru
				                					                																			                								Doctor of physico-mathematical sciences, Associate professor				                								 						
References
- R. Balian, C. Bloch, “Solution of the Schrödinger equation in term of classical paths”, Ann. Physics, 85:2 (1974), 514–545
- V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Engrg. Math., 55:1-4 (2006), 183–237
- F. A. Berezin, “General concept of quantization”, Comm. Math. Phys., 40:2 (1975), 153–174
- J.-M. Bismut, “Demailly's asymptotic Morse inequalities: a heat equation proof”, J. Funct. Anal., 72:2 (1987), 263–278
- J.-M. Bismut, G. Lebeau, “Complex immersions and Quillen metrics”, Inst. Hautes Etudes Sci. Publ. Math., 74 (1991), 1–297
- M. Bordemann, E. Meinrenken, M. Schlichenmaier, “Toeplitz quantization of Kähler manifolds and $operatorname{gl}(N)$, $Ntoinfty$ limits”, Comm. Math. Phys., 165:2 (1994), 281–296
- D. Borthwick, A. Uribe, “Almost complex structures and geometric quantization”, Math. Res. Lett., 3:6 (1996), 845–861
- D. Borthwick, A. Uribe, “The semiclassical structure of low-energy states in the presence of a magnetic field”, Trans. Amer. Math. Soc., 359:4 (2007), 1875–1888
- Th. Bouche, “Convergence de la metrique de Fubini–Study d'un fibre lineaire positif”, Ann. Inst. Fourier (Grenoble), 49 (1990), 117–130
- L. Boutet de Monvel, “Hypoelliptic operators with double characteristics and related pseudo-differential operators”, Comm. Pure Appl. Math., 27 (1974), 585–639
- L. Boutet de Monvel, V. Guillemin, The spectral theory of Toeplitz operators, Ann. of Math. Stud., 99, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1981, v+161 pp.
- L. Boutet de Monvel, J. Sjöstrand, “Sur la singularite des noyaux de Bergman et de Szegő”, Journees: Equations aux derivees partielles de Rennes (1975), Asterisque, 34-35, Soc. Math. France, Paris, 1976, 123–164
- R. Brummelhuis, T. Paul, A. Uribe, “Spectral estimates around a critical level”, Duke Math. J., 78:3 (1995), 477–530
- R. Brummelhuis, A. Uribe, “A semi-classical trace formula for Schrödinger operators”, Comm. Math. Phys., 136:3 (1991), 567–584
- B. Camus, “A semi-classical trace formula at a non-degenerate critical level”, J. Funct. Anal., 208:2 (2004), 446–481
- B. Camus, “A semi-classical trace formula at a totally degenerate critical level”, Comm. Math. Phys., 247:2 (2004), 513–526
- B. Camus, “Contributions of non-extremum critical points to the semi-classical trace formula”, J. Funct. Anal., 217:1 (2004), 79–102
- B. Camus, “Semiclassical spectral estimates for Schrödinger operators at a critical energy level. Case of a degenerate minimum of the potential”, J. Math. Anal. Appl., 341:2 (2008), 1170–1180
- A. M. Charbonnel, G. Popov, “A semi-classical trace formula for several commuting operators”, Comm. Partial Differential Equations, 24:1-2 (1999), 283–323
- L. Charles, Landau levels on a compact manifold, 2022 (v1 – 2020), 60 pp.
- L. Charles, On the spectrum of non degenerate magnetic Laplacian, 2021, 58 pp.
- J. Chazarain, “Formule de Poisson pour les varietes riemanniennes”, Invent. Math., 24 (1974), 65–82
- Y. Colin de Verdière, “Spectre du laplacien et longueurs des geodesiques periodiques. I”, Compositio Math., 27 (1973), 83–106
- Y. Colin de Verdière, “Spectre du laplacien et longueurs des geodesiques periodiques. II”, Compositio Math., 27 (1973), 159–184
- Y. Colin de Verdière, “Spectre conjoint d'operateurs pseudo-differentiels qui commutent. I. Le cas non integrable”, Duke Math. J., 46:1 (1979), 169–182
- Y. Colin de Verdière, “Spectrum of the Laplace operator and periodic geodesics: thirty years after”, Ann. Inst. Fourier (Grenoble), 57:7 (2007), 2429–2463
- M. Combescure, J. Ralston, D. Robert, “A proof of the Gutzwiller semiclassical trace formula using coherent states decomposition”, Comm. Math. Phys., 202:2 (1999), 463–480
- Xianzhe Dai, Kefeng Liu, Xiaonan Ma, “On the asymptotic expansion of Bergman kernel”, J. Differential Geom., 72:1 (2006), 1–41
- J.-P. Demailly, “Champs magnetiques et inegalites de Morse pour la $d"$-cohomologie”, Ann. Inst. Fourier (Grenoble), 35:4 (1985), 189–229
- J.-P. Demailly, “Holomorphic Morse inequalities”, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., 52, Part 2, Amer. Math. Soc., Providence, RI, 1991, 93–114
- M. Dimassi, J. Sjöstrand, Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Note Ser., 268, Cambridge Univ. Press, Cambridge, 1999, xi+227 pp.
- S. Dozias, “Clustering for the spectrum of $h$-pseudodifferential operators with periodic flow on an energy surface”, J. Funct. Anal., 145:2 (1997), 296–311
- J. J. Duistermaat, V. W. Guillemin, “The spectrum of positive elliptic operators and periodic bicharacteristics”, Invent. Math., 29:1 (1975), 39–79
- F. Faure, M. Tsujii, Prequantum transfer operator for symplectic Anosov diffeomorphism, Asterisque, 375, Soc. Math. France, Paris, 2015, ix+222 pp.
- S. Fournais, B. Helffer, Spectral methods in surface superconductivity, Progr. Nonlinear Differential Equations Appl., 77, Birkhäuser Boston, Inc., Boston, MA, 2010, xx+324 pp.
- V. W. Guillemin, “Symplectic spinors and partial differential equations”, Geometrie symplectique et physique mathematique (Aix-en-Provence, 1974), Editions CNRS, Paris, 1975, 217–252
- V. Guillemin, Sh. Sternberg, Semi-classical analysis, International Press, Boston, MA, 2013, xxiv+446 pp.
- V. Guillemin, A. Uribe, “The Laplace operator on the $n$th tensor power of a line bundle: eigenvalues which are uniformly bounded in $n$”, Asymptotic Anal., 1:2 (1988), 105–113
- V. Guillemin, A. Uribe, “Circular symmetry and the trace formula”, Invent. Math., 96:2 (1989), 385–423
- V. Guillemin, A. Uribe, Z. Wang, “Semiclassical states associated with isotropic submanifolds of phase space”, Lett. Math. Phys., 106:12 (2016), 1695–1728
- V. W. Guillemin, A. Uribe, Zuoqin Wang, “Integral representations of isotropic semiclassical functions and applications”, J. Spectr. Theory, 12:1 (2022), 227–258
- M. C. Gutzwiller, “Periodic orbits and classical quantization conditions”, J. Math. Phys., 12 (1971), 343–358
- M. C. Gutzwiller, Chaos in classical and quantum mechanics, Interdiscip. Appl. Math, 1, Springer-Verlag, New York, 1990, xiv+432 pp.
- B. Helffer, Yu. A. Kordyukov, “Semiclassical analysis of Schrödinger operators with magnetic wells”, Spectral and scattering theory for quantum magnetic systems, Contemp. Math., 500, Amer. Math. Soc., Providence, RI, 2009, 105–121
- B. Helffer, Yu. A. Kordyukov, “Semiclassical spectral asymptotics for a magnetic Schrödinger operator with non-vanishing magnetic field”, Geometric methods in physics, Trends Math., Birkhäuser/Springer, Cham, 2014, 259–278
- B. Helffer, J. Sjöstrand, “Equation de Schrödinger avec champ magnetique et equation de Harper”, Schrödinger operators (Sonderborg, 1988), Lecture Notes in Phys., 345, Springer, Berlin, 1989, 118–197
- L. Ioos, Wen Lu, Xiaonan Ma, G. Marinescu, “Berezin–Toeplitz quantization for eigenstates of the Bochner Laplacian on symplectic manifolds”, J. Geom. Anal., 30:3 (2020), 2615–2646
- D. Khuat-Duy, “A semi-classical trace formula for Schrödinger operators in the case of a critical energy level”, J. Funct. Anal., 146:2 (1997), 299–351
- Ю. А. Кордюков, “Об асимптотических разложениях обобщенных ядер Бергмана на симплектических многообразиях”, Алгебра и анализ, 30:2 (2018), 163–187
- Yu. A. Kordyukov, “Semiclassical spectral analysis of the Bochner–Schrödinger operator on symplectic manifolds of bounded geometry”, Anal. Math. Phys., 12:1 (2022), 22, 37 pp.
- Yu. A. Kordyukov, “Berezin–Toeplitz quantization asssociated with higher Landau levels of the Bochner Laplacian”, J. Spectr. Theory, 12:1 (2022), 143–167
- Yu. A. Kordyukov, Semiclassical asymptotic expansions for functions of the Bochner–Schrödinger operator, 2022, 24 pp.
- Yu. A. Kordyukov, Xiaonan Ma, G. Marinescu, “Generalized Bergman kernels on symplectic manifolds of bounded geometry”, Comm. Partial Differential Equations, 44:11 (2019), 1037–1071
- Ю. А. Кордюков, И. А. Тайманов, “Формула следа для магнитного лапласиана”, УМН, 74:2(446) (2019), 149–186
- Ю. А. Кордюков, И. А. Тайманов, “Квазиклассическое приближение для магнитных монополей”, УМН, 75:6(456) (2020), 85–106
- Yu. A. Kordyukov, I. A. Taimanov, “Trace formula for the magnetic Laplacian on a compact hyperbolic surface”, Regul. Chaotic Dyn., 27:4 (2022), 460–476
- С. З. Левендорский, “Неклассические спектральные асимптотики”, УМН, 43:1(259) (1988), 123–157
- Xiaonan Ma, G. Marinescu, “The $mathrm{spin}^c$ Dirac operator on high tensor powers of a line bundle”, Math. Z., 240:3 (2002), 651–664
- Xiaonan Ma, G. Marinescu, Holomorphic Morse inequalities and Bergman kernels, Progr. Math., 254, Birkhäuser Verlag, Basel, 2007, xiv+422 pp.
- Xiaonan Ma, G. Marinescu, “Generalized Bergman kernels on symplectic manifolds”, Adv. Math., 217:4 (2008), 1756–1815
- Xiaonan Ma, G. Marinescu, “Toeplitz operators on symplectic manifolds”, J. Geom. Anal., 18:2 (2008), 565–611
- Xiaonan Ma, G. Marinescu, “Exponential estimate for the asymptotics of Bergman kernels”, Math. Ann., 362:3-4 (2015), 1327–1347
- Xiaonan Ma, G. Marinescu, S. Zelditch, “Scaling asymptotics of heat kernels of line bundles”, Analysis, complex geometry, and mathematical physics: in honor of Duong H. Phong, Contemp. Math., 644, Amer. Math. Soc., Providence, RI, 2015, 175–202
- G. Marinescu, N. Savale, Bochner Laplacian and Bergman kernel expansion of semi-positive line bundles on a Riemann surface, 2018, 49 pp.
- В. П. Маслов, Комплексный метод ВКБ в нелинейных уравнениях, Наука, М., 1977, 384 с.
- E. Meinrenken, “Semiclassical principal symbols and Gutzwiller's trace formula”, Rep. Math. Phys., 31:3 (1992), 279–295
- E. Meinrenken, “Trace formulas and the Conley–Zehnder index”, J. Geom. Phys., 13:1 (1994), 1–15
- A. Melin, J. Sjöstrand, “Fourier integral operators with complex-valued phase functions”, Fourier integral operators and partial differential equations (Univ. Nice, Nice, 1974), Lecture Notes in Math., 459, Springer, Berlin, 1975, 120–223
- L. Morin, A semiclassical Birkhoff normal form for constant-rank magnetic fields, 2021 (v1 – 2020), 36 pp.
- L. Morin, “A semiclassical Birkhoff normal form for symplectic magnetic wells”, J. Spectr. Theory, 12:2 (2022), 459–496
- L. Morin, “Review on spectral asymptotics for the semiclassical Bochner Laplacian of a line bundle”, Confluentes Math., 14:1 (2022), 65–79
- С. П. Новиков, “Гамильтонов формализм и многозначный аналог теории Морса”, УМН, 37:5(227) (1982), 3–49
- С. П. Новиков, И. Шмельцер, “Периодические решения уравнений Кирхгофа для свободного движения твердого тела в жидкости и расширенная теория Люстерника–Шнирельмана–Морса (ЛШМ). I”, Функц. анализ и его прил., 15:3 (1981), 54–66
- С. П. Новиков, И. А. Тайманов, “Периодические экстремали многозначных или не всюду положительных функционалов”, Докл. АН СССР, 274:1 (1984), 26–28
- J.-P. Ortega, T. S. Ratiu, Momentum maps and Hamiltonian reduction, Progr. Math., 222, Birkhäuser Boston, Inc., Boston, MA, 2004, xxxiv+497 pp.
- T. Paul, A. Uribe, “The semi-classical trace formula and propagation of wave packets”, J. Funct. Anal., 132:1 (1995), 192–249
- V. Petkov, G. Popov, “Semi-classical trace formula and clustering of eigenvalues for Schrödinger operators”, Ann. Inst. H. Poincare Phys. Theor., 68:1 (1998), 17–83
- N. Raymond, Bound states of the magnetic Schrödinger operator, EMS Tracts in Math., 27, Eur. Math. Soc. (EMS), Zürich, 2017, xiv+380 pp.
- N. Savale, “Koszul complexes, Birkhoff normal form and the magnetic Dirac operator”, Anal. PDE, 10:8 (2017), 1793–1844
- N. Savale, “A Gutzwiller type trace formula for the magnetic Dirac operator”, Geom. Funct. Anal., 28:5 (2018), 1420–1486
- А. Зельберг, “Гармонический анализ и дискретные группы в слабосимметрических римановых пространствах; приложения к теории рядов Дирихле”, Математика, 1:4 (1957), 3–28
- J. Sjöstrand, M. Zworski, “Quantum monodromy and semi-classical trace formulae”, J. Math. Pures Appl. (9), 81:1 (2002), 1–33
- И. А. Тайманов, “Принцип перекидывания циклов в теории Морса–Новикова”, Докл. АН СССР, 268:1 (1983), 46–50
- И. А. Тайманов, “Несамопересекающиеся замкнутые экстремали многозначных или не всюду положительных функционалов”, Изв. АН СССР. Сер. матем., 55:2 (1991), 367–383
- И. А. Тайманов, “Замкнутые экстремали на двумерных многообразиях”, УМН, 47:2(284) (1992), 143–185
- И. А. Тайманов, “Замкнутые несамопересекающиеся экстремали многозначных функционалов”, Сиб. матем. журн., 33:4 (1992), 155–162
- S. Teufel, Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Math., 1821, Springer-Verlag, Berlin, 2003, vi+236 pp.
- A. Uribe, “Trace formulae”, First summer school in analysis and mathematical physics (Cuernavaca Morelos, 1998), Contemp. Math., 260, Aportaciones Mat., Amer. Math. Soc., Providence, RI, 2000, 61–90
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
				
 Open Access
		                                Open Access Access granted
						Access granted Subscription Access
		                                		                                        Subscription Access
		                                					