On the integrability of the equations of dynamics in a non-potential force field

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A range of issues related to the integration of the equations of motion of mechanical systems in non-potential force fields (often called circulatory systems) are discussed. The approach to integration is based on the Euler–Jacobi–Lie theorem: for exact integration of a system with $n$ degrees of freedom it is necessary to have $2n-2$ additional first integrals and symmetry fields (taking the conservation of the phase volume into account) which are in certain natural relations to one another. The cases of motion in non-potential force fields that are integrable by separation of variables are specified. Geometric properties of systems with non-Noether symmetry fields are discussed. Examples of the existence of irreducible polynomial integrals of the third degree in the momentum are given. The problem of conditions for the existence of single-valued polynomial integrals of circulatory systems with two degrees of freedom and toric configuration spaces is considered. It is shown that in a typical case the equations of motion do not admit non-constant polynomial integrals.Bibliography: 32 titles.

About the authors

Valery Vasil'evich Kozlov

Steklov Mathematical Institute of Russian Academy of Sciences

Email: kozlov@pran.ru
Doctor of physico-mathematical sciences, Professor

References

  1. В. Ф. Журавлeв, “О разложении нелинейных обобщeнных сил на потенциальную и циркуляционную компоненты”, Докл. РАН, 414:5 (2007), 622–624
  2. J. Lerbet, N. Challamel, F. Nicot, F. Darve, “Geometric degree of nonconservativity: set of solutions for the linear case and extension to the differentiable non-linear case”, Appl. Math. Model., 40:11-12 (2016), 5930–5941
  3. J. Lerbet, N. Challamel, F. Nicot, F. Darve, “Coordinate free nonlinear incremental discrete mechanics”, ZAMM Z. Angew. Math. Mech., 98:10 (2018), 1813–1833
  4. Ж. де Рам, Дифференцируемые многообразия, ИЛ, М., 1956, 250 с.
  5. V. V. Kozlov, “On the instability of equilibria of mechanical systems in nonpotential force fields in the case of typical degeneracies”, Acta Mech., 232:9 (2021), 3331–3341
  6. А. А. Майлыбаев, А. П. Сейранян, Многопараметрические задачи устойчивости. Теория и приложения в механике, Физматлит, М., 2009, 399 с.
  7. O. N. Kirillov, Nonconservative stability problems of modern physics, De Gruyter Stud. Math. Phys., 14, De Gruyter, Berlin, 2013, xviii+429 pp.
  8. V. V. Kozlov, “Integrals of circulatory systems which are quadratic in momenta”, Regul. Chaotic Dyn., 26:6 (2021), 647–657
  9. V. V. Kozlov, “On the integrability of circulatory systems”, Regul. Chaotic Dyn., 27:1 (2022), 11–17
  10. В. В. Козлов, “Топологические препятствия к интегрируемости натуральных механических систем”, Докл. АН СССР, 249:6 (1979), 1299–1302
  11. В. Н. Колокольцов, “Геодезические потоки на двумерных многообразиях с дополнительным полиномиальным по скоростям первым интегралом”, Изв. АН СССР. Сер. матем., 46:5 (1982), 994–1010
  12. И. А. Тайманов, “Топологические препятствия к интегрируемости геодезических потоков на неодносвязных многообразиях”, Изв. АН СССР. Сер. матем., 51:2 (1987), 429–435
  13. И. А. Тайманов, “О топологических свойствах интегрируемых геодезических потоков”, Матем. заметки, 44:2 (1988), 283–284
  14. В. В. Козлов, Н. В. Денисова, “Полиномиальные интегралы геодезических потоков на двумерном торе”, Матем. сб., 185:12 (1994), 49–64
  15. И. А. Тайманов, “О первых интегралах геодезических потоков на двумерном торе”, Современные проблемы механики, Сборник статей, Труды МИАН, 295, МАИК “Наука/Интерпериодика”, М., 2016, 241–260
  16. В. В. Козлов, “Тензорные инварианты и интегрирование дифференциальных уравнений”, УМН, 74:1(445) (2019), 117–148
  17. К. Якоби, Лекции по динамике, ОНТИ, М.–Л., 1936, 272 с.
  18. V. V. Kozlov, “The Euler–Jakobi–Lie integrability theorem”, Regul. Chaotic Dyn., 18:4 (2013), 329–343
  19. В. В. Козлов, Методы качественного анализа в динамике твердого тела, 2-е изд., НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2000, 248 с.
  20. А. В. Цыганов, Интегрируемые системы в методе разделения переменных, Современная математика, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2005, 384 с.
  21. А. П. Веселов, “О замене времени в интегрируемых системах”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1987, № 5, 25–29
  22. В. В. Козлов, “Лиувиллевость инвариантных мер вполне интегрируемых систем и уравнение Монжа–Ампера”, Матем. заметки, 53:4 (1993), 45–52
  23. A. Пуанкаре, Теория вероятностей, РХД, М.–Ижевск, 1999, 280 с.
  24. А. Н. Колмогоров, “О динамических системах с интегральным инвариантом на торе”, Докл. АН СССР, 93:5 (1953), 763–766
  25. В. И. Арнольд, “Полиинтегрируемые потоки”, Алгебра и анализ, 4:6 (1992), 54–62
  26. А. В. Рождественский, “Об аддитивном когомологическом уравнении и замене времени в линейном потоке на торе с диофантовым вектором частот”, Матем. сб., 195:5 (2004), 115–156
  27. В. В. Козлов, “Динамические системы на торе с многозначными интегралами”, Динамические системы и оптимизация, Сборник статей. К 70-летию со дня рождения академика Дмитрия Викторовича Аносова, Труды МИАН, 256, Наука, МАИК “Наука/Интерпериодика”, М., 2007, 201–218
  28. А. В. Борисов, И. С. Мамаев, Современные методы теории интегрируемых систем, Ин-т компьютерных исследований, М.–Ижевск, 2003, 294 с.
  29. М. Л. Бялый, “О полиномиальных по импульсам первых интегралах для механической системы на двумерном торе”, Функц. анализ и его прил., 21:4 (1987), 64–65
  30. А. Пуанкаре, “Новые методы небесной механики. I”, Избранные труды, т. I, Наука, М., 1971, 9–328
  31. В. В. Козлов, Д. В. Трещeв, “Об интегрируемости гамильтоновых систем с торическим пространством положений”, Матем. сб., 135(177):1 (1988), 119–138
  32. Л. Ауслендер, Л. Грин, Ф. Хан, Потоки на однородных пространствах, Мир, М., 1966, 208 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Козлов В.V.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».