Functions with general monotone Fourier coefficients
- Authors: Belov A.S.1, Dyachenko M.I.2, Tikhonov S.Y.3,4,5
-
Affiliations:
- Ivanovo State University
- Moscow Center for Fundamental and Applied Mathematics
- Centre de Recerca Matemàtica
- Institució Catalana de Recerca i Estudis Avançats
- Universitat Autònoma de Barcelona
- Issue: Vol 76, No 6 (2021)
- Pages: 3-70
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/142313
- DOI: https://doi.org/10.4213/rm10003
- ID: 142313
Cite item
Abstract
This paper is a study of trigonometric series with general monotone coefficients in the class $\operatorname{GM}(p)$ with $p\geqslant 1$. Sharp estimates are proved for the Fourier coefficients of integrable and continuous functions. Also obtained are optimal results in terms of coefficients for various types of convergence of Fourier series. For $1 < p < \infty$ two-sided estimates are obtained for the $L_p$-moduli of smoothness of sums of series with $\operatorname{GM}(p)$-coefficients, as well as for the (quasi-)norms of such sums in Lebesgue, Lorentz, Besov, and Sobolev spaces in terms of Fourier coefficients.
Bibliography: 99 titles.
About the authors
Aleksandr Sergeevich Belov
Ivanovo State University
Author for correspondence.
Email: asbelov2@mail.ru
Doctor of physico-mathematical sciences, Associate professor
Mikhail Ivanovich Dyachenko
Moscow Center for Fundamental and Applied Mathematics
Email: dyach@mail.ru
Doctor of physico-mathematical sciences, Professor
Sergei Yur'evich Tikhonov
Centre de Recerca Matemàtica; Institució Catalana de Recerca i Estudis Avançats; Universitat Autònoma de Barcelona
Email: stikhonov@crm.cat
Candidate of physico-mathematical sciences, no status
References
- S. Aljančic, “On the integral moduli of continuity in $L_p$ ($1 < p < infty$) of Fourier series with monotone coefficients”, Proc. Amer. Math. Soc., 17:2 (1966), 287–294
- S. Aljančic, M. Tomic, “Über den Stetigkeitsmodul von Fourier-Reihen mit monotonen Koeffizienten”, Math. Z., 88 (1965), 274–284
- R. Askey, “Smoothness conditions for Fourier series with monotone coefficients”, Acta Sci. Math. (Szeged), 28 (1967), 169–171
- Н. К. Бари, Тригонометрические ряды, Физматгиз, М., 1961, 936 с.
- A. С. Белов, “Об условиях сходимости в среднем тригонометрических рядов Фурье”, Изв. Тул. гос. ун-та. Сер. Математика. Механика. Информатика, 4:1 (1998), 40–46
- A. С. Белов, “Об условиях сходимости (ограниченности) в среднем частных сумм тригонометрического ряда”, Метрическая теория функций и смежные вопросы анализа, АФЦ, М., 1999, 1–17
- A. С. Белов, “Замечания о сходимости (ограниченности) в среднем частных сумм тригонометического ряда”, Матем. заметки, 71:6 (2002), 807–817
- C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp.
- R. P. Boas, Jr., Integrability theorems for trigonometric transforms, Ergeb. Math. Grenzgeb., 38, Springer-Verlag New York Inc., New York, 1967, v+66 pp.
- R. P. Boas, Jr., “The integrability class of the sine transform of a monotonic function”, Studia Math., 44 (1972), 365–369
- B. Booton, “General monotone sequences and trigonometric series”, Math. Nachr., 287:5-6 (2014), 518–529
- B. Booton, “General monotone functions and their Fourier coefficients”, J. Math. Anal. Appl., 426:2 (2015), 805–823
- A. P. Calderon, “Intermediate spaces and interpolation, the complex method”, Studia Math., 24:2 (1964), 113–190
- Chang-Pao Chen, Lonkey Chen, “Asymptotic behavior of trigonometric series with $O$-regularly varying quasimonotone coefficients. II”, J. Math. Anal. Appl., 245:1 (2000), 297–301
- D. B. H. Cline, “Regularly varying rates of decrease for moduli of continuity and Fourier transforms of functions on $mathbf{R}^d$”, J. Math. Anal. Appl., 159:2 (1991), 507–519
- F. Dai, Z. Ditzian, S. Tikhonov, “Sharp Jackson inequalities”, J. Approx. Theory, 151:1 (2008), 86–112
- A. Debernardi, “Hankel transforms of general monotone functions”, Topics in classical and modern analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2019, 87–104
- A. Debernardi, “The Boas problem on Hankel transforms”, J. Fourier Anal. Appl., 25:6 (2019), 3310–3341
- A. Debernardi, “Weighted norm inequalities for generalized Fourier-type transforms and applications”, Publ. Mat., 64:1 (2020), 3–42
- R. A. DeVore, G. G. Lorentz, Constructive approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, x+449 pp.
- Z. Ditzian, V. H. Hristov, K. G. Ivanov, “Moduli of smoothness and $K$-functionals in $L_p$, $0
- O. Dominguez, D. D. Haroske, S. Tikhonov, “Embeddings and characterizations of Lipschitz spaces”, J. Math. Pures Appl. (9), 144 (2020), 69–105
- O. Dominguez, S. Tikhonov, “Function spaces of logarithmic smoothness: embeddings and characterizations”, Mem. Amer. Math. Soc. (to appear)
- O. Dominguez, S. Tikhonov, New estimates for the maximal functions and applications, 2021, 47 pp.
- М. И. Дьяченко, “Кусочно-монотонные функции нескольких переменных и теорема Харди–Литтлвуда”, Изв. АН СССР. Сер. матем., 55:6 (1991), 1156–1170
- М. И. Дьяченко, “Некоторые проблемы теории кратных тригонометрических рядов”, УМН, 47:5(287) (1992), 97–162
- М. И. Дьяченко, “Теорема Харди–Литтлвуда для тригонометрических рядов с обобщенно-монотонными коэффициентами”, Изв. вузов. Матем., 2008, № 5, 38–47
- М. И. Дьяченко, А. Б. Муканов, С. Ю. Тихонов, “Гладкость функций и коэффициенты Фурье”, Матем. сб., 210:7 (2019), 94–119
- M. Dyachenko, A. Mukanov, S. Tikhonov, “Uniform convergence of trigonometric series with general monotone coefficients”, Canad. J. Math., 71:6 (2019), 1445–1463
- M. Dyachenko, A. Mukanov, S. Tikhonov, “Hardy–Littlewood theorems for trigonometric series with general monotone coefficients”, Studia Math., 250:3 (2020), 217–234
- М. И. Дьяченко, Е. Д. Нурсултанов, “Теорема Харди–Литтлвуда для тригонометрических рядов с $alpha$-монотонными коэффициентами”, Матем. сб., 200:11 (2009), 45–60
- M. Dyachenko, E. Nursultanov, A. Kankenova, “On summability of Fourier coefficients of functions from Lebesgue space”, J. Math. Anal. Appl., 419:2 (2014), 959–971
- M. Dyachenko, S. Tikhonov, “Convergence of trigonometric series with general monotone coefficients”, C. R. Math. Acad. Sci. Paris, 345:3 (2007), 123–126
- M. Dyachenko, S. Tikhonov, “General monotone sequences and convergence of trigonometric series”, Topics in classical analysis and applications in honor of Daniel Waterman, World Sci. Publ., Hackensack, NJ, 2008, 88–101
- M. Dyachenko, S. Tikhonov, “Integrability and continuity of functions represented by trigonometric series: coefficients criteria”, Studia Math., 193:3 (2009), 285–306
- M. I. Dyachenko, S. Yu. Tikhonov, “Smoothness and asymptotic properties of functions with general monotone Fourier coefficients”, J. Fourier Anal. Appl., 24:4 (2018), 1072–1097
- Lei Feng, V. Totik, Song Ping Zhou, “Trigonometric series with a generalized monotonicity condition”, Acta Math. Sin. (Engl. Ser.), 30:8 (2014), 1289–1296
- Lei Feng, Songping Zhou, “Trigonometric inequalities in the MVBV condition”, Math. Inequal. Appl., 18:2 (2015), 485–491
- J. Garcia-Cuerva, V. I. Kolyada, “Rearrangement estimates for Fourier transforms in $L^p$ and $H^p$ in terms of moduli of continuity”, Math. Nachr., 228 (2001), 123–144
- D. Gorbachev, E. Liflyand, S. Tikhonov, “Weighted Fourier inequalities: Boas' conjecture in $mathbb{R}^n$”, J. Anal. Math., 114 (2011), 99–120
- D. Gorbachev, S. Tikhonov, “Moduli of smoothness and growth properties of Fourier transforms: two-sided estimates”, J. Approx. Theory, 164:9 (2012), 1283–1312
- S. M. Grigoriev, Y. Sagher, T. R. Savage, “General monotonicity and interpolation of operators”, J. Math. Anal. Appl., 435:2 (2016), 1296–1320
- G. H. Hardy, “Some theorems concerning trigonometrical series of a special type”, Proc. London Math. Soc. (2), 32:6 (1931), 441–448
- P. Heywood, “A note on a theorem of Hardy on trigonometrical series”, J. London Math. Soc., 29:3 (1954), 373–378
- A. Jumabayeva, B. Simonov, “Inequalities for moduli of smoothness of functions and their Liouville–Weyl derivatives”, Acta Math. Hungar., 156:1 (2018), 1–17
- А. А. Джумабаева, Б. В. Симонов, “Преобразование рядов Фурье с помощью обобщенно монотонных последовательностей”, Матем. заметки, 107:5 (2020), 674–692
- В. Кокилашвили, “О приближении периодических функций”, Тр. Тбилисского матем. ин-та, 34 (1968), 51–81
- А. А. Конюшков, “Наилучшие приближения тригонометрическими полиномами и коэффициенты Фурье”, Матем. сб., 44(86):1 (1958), 53–84
- B. Lakovic, “On a class of functions”, Mat. Vesnik, 39:4 (1987), 405–415
- R. J. Le, S. P. Zhou, “A remark on ‘two-sided’ monotonicity condition: an application to $L^p$ convergence”, Acta Math. Hungar., 113:1-2 (2006), 159–169
- H. Lebesgue, “Sur la representation trigonometrique approchee des fonctions satisfaisant à une condition de Lipschitz”, Bull. Soc. Math. France, 38 (1910), 184–210
- L. Leindler, “On the uniform convergence and boundedness of a certain class of sine series”, Anal. Math., 27:4 (2001), 279–285
- L. Leindler, “Embedding relations of classes of numerical sequences”, Acta Sci. Math. (Szeged), 68:3-4 (2002), 689–695
- L. Leindler, “Relations among Fourier coefficients and sum-functions”, Acta Math. Hungar., 104:1-2 (2004), 171–183
- L. Leindler, “Generalization of embedding relations of Besov classes”, Anal. Math., 31:1 (2005), 1–12
- L. Leindler, “Embedding relations of Besov classes”, Acta Sci. Math., 73:1-2 (2007), 133–149
- E. Liflyand, S. Tikhonov, “Extended solution of Boas' conjecture on Fourier transforms”, C. R. Math. Acad. Sci. Paris, 346:21-22 (2008), 1137–1142
- E. Liflyand, S. Tikhonov, “A concept of general monotonicity and applications”, Math. Nachr., 284:8-9 (2011), 1083–1098
- E. Liflyand, S. Tikhonov, “Two-sided weighted Fourier inequalities”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11:2 (2012), 341–362
- G. G. Lorentz, “Fourier-Koeffizienten und Funktionenklassen”, Math. Z., 51 (1948), 135–149
- С. М. Никольский, Приближение функций многих переменных и теоремы вложения, 2-е изд., Наука, М., 1977, 455 с.
- Е. Д. Нурсултанов, “Сетевые пространства и неравенства типа Харди–Литтлвуда”, Матем. сб., 189:3 (1998), 83–102
- E. Nursultanov, S. Tikhonov, “Net spaces and boundedness of integral operators”, J. Geom. Anal., 21:4 (2011), 950–981
- C. Oehring, “Asymptotics of singular numbers of smooth kernels via trigonometric transforms”, J. Math. Anal. Appl., 145:2 (1990), 573–605
- C. Oehring, “Some extensions of Konyushkov's theorem concerning the moduli of Fourier coefficients”, Houston J. Math., 16:3 (1990), 373–386
- И. Н. Пак, “О суммах тригонометрических рядов”, УМН, 35:2(212) (1980), 91–144
- R. E. A. C. Paley, N. Wiener, “Notes on the theory and application of Fourier transforms. II. On conjugate functions”, Trans. Amer. Math. Soc., 35:2 (1933), 354–355
- H. R. Pitt, “Theorems on Fourier series and power series”, Duke Math. J., 3:4 (1937), 747–755
- А. Ю. Попов, “Оценки сумм рядов по синусам с монотонными коэффициентами некоторых классов”, Матем. заметки, 74:6 (2003), 877–888
- М. К. Потапов, M. Бериша, “Модули гладкости и коэффициенты Фурье периодических функций одного переменного”, Publ. Inst. Math. (Beograd) (N. S.), 26(40) (1979), 215–228
- C. S. Rees, “On the integral modulus of continuity of Fourier series”, Indian J. Math., 9 (1967), 489–497
- W. Rudin, “Some theorems on Fourier coefficients”, Proc. Amer. Math. Soc., 10:6 (1959), 855–859
- Y. Sagher, “An application of interpolation theory to Fourier series”, Studia Math., 41:2 (1972), 169–181
- Y. Sagher, “Integrability conditions for the Fourier transform”, J. Math. Anal. Appl., 54:1 (1976), 151–156
- R. Salem, “Determination de l'ordre de grandeur à l'origine de certaines series trigonometriques”, C. R. Acad. Sci. Paris, 186 (1928), 1804–1806
- R. Salem, Essais sur les series trigonometriques, Hermann et Cie., Paris, 1940, 87 pp.
- R. Salem, A. Zygmund, “The approximation by partial sums of Fourier series”, Trans. Amer. Math. Soc., 59:1 (1946), 14–22
- S. M. Shah, “A note on quasi-monotone series”, Math. Student, 15 (1947), 19–24
- H. S. Shapiro, Extremal problems for polynomials and power series, Thesis (Ph.D.), Massachusetts Institute of Technology, 1952, 102 pp. (no paging)
- Б. В. Симонов, С. Ю. Тихонов, “Теоремы вложения в конструктивной теории приближений”, Матем. сб., 199:9 (2008), 107–148
- С. Б. Стечкин, “Тригонометрические ряды с коэффициентами монотонного типа”, Теория приближений. Асимптотические разложения, Сборник статей, Тр. ИММ УрО РАН, 7, № 1, 2001, 197–207
- E. M. Stein, “Interpolation of linear operators”, Trans. Amer. Math. Soc., 83:2 (1956), 482–492
- B. Szal, “Application of the MRBVS classes to embedding relations of the Besov classes”, Demonstratio Math., 42:2 (2009), 303–322
- B. Szal, “Generalization of a theorem on Besov–Nikol'skiĭ classes”, Acta Math. Hungar., 125:1-2 (2009), 161–181
- O. Szasz, “Quasi-monotone series”, Amer. J. Math., 70 (1948), 203–206
- S. Tikhonov, “Characteristics of Besov–Nikol'skiĭ class functions”, Electron. Trans. Numer. Anal., 19 (2005), 94–104
- S. Tikhonov, “Embedding results in questions of strong approximation by Fourier series”, Acta Sci. Math. (Szeged), 72:1-2 (2006), 117–128
- C. Тихонов, “О равномерной сходимости тригонометрических рядов”, Матем. заметки, 81:2 (2007), 304–310
- S. Tikhonov, “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735
- S. Tikhonov, “Trigonometric series of Nikol'skii classes”, Acta Math. Hungar., 114:1-2 (2007), 61–78
- S. Tikhonov, “Best approximation and moduli of smoothness: computation and equivalence theorems”, J. Approx. Theory, 153:1 (2008), 19–39
- S. Tikhonov, “On $L_1$-convergence of Fourier series”, J. Math. Anal. Appl., 347:2 (2008), 416–427
- C. Тихонов, “Весовые неравенства для рядов Фурье и ограниченность вариации”, Труды МИАН, 312, Функциональные пространства, теория приближений и смежные вопросы анализа (2021), 294–312
- D. Torres-Latorre, “Functions preserving general monotone sequences”, Anal. Math., 47:1 (2021), 211–227
- Х. Трибель, Теория функциональных пространств, Мир, М., 1986, 448 с.
- Ван Куньян, С. А. Теляковский, “Дифференциальные свойства сумм одного класса тригонометрических рядов”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1999, № 1, 24–29
- Dansheng Yu, Ping Zhou, Songping Zhou, “On $L^p$ integrability and convergence of trigonometric series”, Studia Math., 182:3 (2007), 215–226
- A. Zygmund, “Some points in the theory of trigonometric and power series”, Trans. Amer. Math. Soc., 36:3 (1934), 586–617
- А. Зигмунд, Тригонометрические ряды, т. I, II, Мир, М., 1965, 615 с., 537 с.
Supplementary files
