Smooth DG algebras and twisted tensor product

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The twisted tensor product of DG algebras is studied and sufficient conditions for smoothness of such a product are presented. It is shown that in the case of finite-dimensional DG algebras, applying this operation offers great possibilities for constructing new examples of smooth DG algebras and algebras. In particular, examples are given of families of algebras of finite global dimension with two simple modules that have non-trivial moduli spaces. Bibliography: 24 titles.

About the authors

Dmitri Olegovich Orlov

Steklov Mathematical Institute of Russian Academy of Sciences

Email: orlov@mi-ras.ru
Doctor of physico-mathematical sciences, no status

References

  1. A. I. Bondal, M. Van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36
  2. D. A. Buell, Binary quadratic forms. Classical theory and modern computations, Springer-Verlag, New York, 1989, x+247 pp.
  3. A. Čap, H. Schichl, J. Vanžura, “On twisted tensor products of algebras”, Comm. Algebra, 23:12 (1995), 4701–4735
  4. Д. В. Дубнов, “О базисных алгебрах конечной гомологической размерности”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1997, № 2, 15–17
  5. A. J. Efimov, “Categorical smooth compactifications and generalized Hodge-to-de Rham degeneration”, Invent. Math., 222:2 (2020), 667–694
  6. A. Elagin, “Calculating dimension of triangulated categories: path algebras, their tensor powers and orbifold projective lines”, J. Algebra, 592 (2022), 357–401
  7. P. Gabriel, “Auslander–Reiten sequences and representation-finite algebras”, Representation theory (Carleton Univ., Ottawa, ON, 1979), v. I, Lecture Notes in Math., 831, Springer, Berlin, 1980, 1–71
  8. E. L. Green, “Remarks on projective resolutions”, Representation theory (Carleton Univ., Ottawa, ON, 1979), v. II, Lecture Notes in Math., 832, Springer, Berlin, 1980, 259–279
  9. D. Happel, “A family of algebras with two simple modules and Fibonacci numbers”, Arch. Math. (Basel), 57:2 (1991), 133–139
  10. D. Happel, D. Zacharia, “Algebras of finite global dimension”, Algebras, quivers and representations, Abel Symp., 8, Springer, Heidelberg, 2013, 95–113
  11. K. Igusa, “Notes on the no loops conjecture”, J. Pure Appl. Algebra, 69:2 (1990), 161–176
  12. B. Keller, “Deriving DG categories”, Ann. Sci. Ecole Norm. Sup. (4), 27:1 (1994), 63–102
  13. E. Kirkman, J. Kuzmanovich, “Algebras with large homological dimensions”, Proc. Amer. Math. Soc., 109:4 (1990), 903–906
  14. A. Kuznetsov, E. Shinder, Homologically finite-dimensional objects in triangulated categories, 2023 (v1 – 2022), 32 pp.
  15. Qunhua Liu, Dong Yang, “Stratifications of algebras with two simple modules”, Forum Math., 28:1 (2016), 175–188
  16. V. A. Lunts, “Categorical resolution of singularities”, J. Algebra, 323:10 (2010), 2977–3003
  17. V. A. Lunts, O. M. Schnürer, “Smoothness of equivariant derived categories”, Proc. Lond. Math. Soc. (3), 108:5 (2014), 1226–1276
  18. F. H. Membrillo-Hernandez, “Quasi-hereditary algebras with two simple modules and Fibonacci numbers”, Comm. Algebra, 22:11 (1994), 4499–4509
  19. D. Orlov, “Remarks on generators and dimensions of triangulated categories”, Mosc. Math. J., 9:1 (2009), 143–149
  20. D. Orlov, “Smooth and proper noncommutative schemes and gluing of DG categories”, Adv. Math., 302 (2016), 59–105
  21. Д. О. Орлов, “Производные некоммутативные схемы, геометрические реализации и конечномерные алгебры”, УМН, 73:5(443) (2018), 123–182
  22. D. Orlov, “Finite-dimensional differential graded algebras and their geometric realizations”, Adv. Math., 366 (2020), 107096, 33 pp.
  23. Д. О. Орлов, “Скрученные тензорные произведения ДГ алгебр”, УМН, 76:6(462) (2021), 199–200
  24. R. Rouquier, “Dimensions of triangulated categories”, J. K-Theory, 1:2 (2008), 193–256

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Орлов Д.O.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).