Cyclic coverings of graphs. Enumeration of maked skeleton forests and trees, Krchhoff index, and Jacobians
- Authors: Mednykh A.D.1,2, Mednykh I.A.1,2
-
Affiliations:
- Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Issue: Vol 78, No 3 (2023)
- Pages: 115-164
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133756
- DOI: https://doi.org/10.4213/rm10098
- ID: 133756
Cite item
Abstract
About the authors
Alexander Dmitrievich Mednykh
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: mednykh@math.nsc.ru
Doctor of physico-mathematical sciences, Professor
Il'ya Aleksandrovich Mednykh
Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: ilyamednykh@mail.ru
Candidate of physico-mathematical sciences
References
- N. V. Abrosimov, G. A. Baigonakova, L. A. Grunwald, I. A. Mednykh, “Counting rooted spanning forests in cobordism of two circulant graphs”, Сиб. электрон. матем. изв., 17 (2020), 814–823
- N. V. Abrosimov, G. A. Baigonakova, I. A. Mednykh, “Counting spanning trees in cobordism of two circulant graphs”, Сиб. электрон. матем. изв., 15 (2018), 1145–1157
- A. Adam, “Research problem 2-10”, J. Combin. Theory, 2 (1967), 393
- R. Bacher, P. de la Harpe, T. Nagnibeda, “The lattice of integral flows and the lattice of integral cuts on a finite graph”, Bull. Soc. Math. France, 125:2 (1997), 167–198
- G. A. Baigonakova, A. D. Mednykh, “Elementary formulas for Kirchhoff index of Möbius ladder and prism graphs”, Сиб. электрон. матем. изв., 16 (2019), 1654–1661
- M. Baker, S. Norine, “Harmonic morphisms and hyperelliptic graphs”, Int. Math. Res. Not. IMRN, 2009:15 (2009), 2914–2955
- H. Bass, “Covering theory for graphs of groups”, J. Pure Appl. Algebra, 89:1-2 (1993), 3–47
- N. Biggs, “Three remarkable graphs”, Canad. J. Math., 25:2 (1973), 397–411
- N. L. Biggs, “Chip-firing and the critical group of a graph”, J. Algebraic Combin., 9:1 (1999), 25–45
- F. T. Boesch, Z. R. Bogdanowicz, “The number of spanning tress in a prism”, Internat. J. Comput. Math., 21:3-4 (1987), 229–243
- F. T. Boesch, H. Prodinger, “Spanning tree formulas and Chebyshev polynomials”, Graphs Combin., 2 (1986), 191–200
- D. W. Boyd, “Mahler's measure and invariants of hyperbolic manifolds”, Number theory for the millennium (Urbana, IL, 2000), v. I, A K Peters, Natick, MA, 2002, 127–143
- D. Calan, “A combinatorial derivation of the number of labeled forests”, J. Integer Seq., 6:4 (2003), 03.4.7, 9 pp.
- P. Chebotarev, “Spanning forests and the golden ratio”, Discrete Appl. Math., 156:5 (2008), 813–821
- P. Chebotarev, R. Agaev, “Forest matrices around the Laplacian matrix”, Linear Algebra Appl., 356:1-3 (2002), 253–274
- P. Chebotarev, E. Shamis, Matrix-forest theorems, 2006, 10 pp.
- Pingge Chen, Yaoping Hou, Chingwah Woo, “On the critical group of the Möbius ladder graph”, Australas. J. Combin., 36 (2006), 133–142
- Xiebin Chen, Qiuying Lin, Fuji Zhang, “The number of spanning trees in odd valent circulant graphs”, Discrete Math., 282:1-3 (2004), 69–79
- Z. Cinkir, “Effective resistances and Kirchhoff index of ladder graphs”, J. Math. Chem., 54:4 (2016), 955–966
- Z. Cinkir, Effective resistances and Kirchhoff index of prism graphs, 2017, 9 pp.
- M. Conder, R. Grande, “On embeddings of circulant graphs”, Electron. J. Combin., 22:2 (2015), P2.28, 27 pp.
- R. Cori, D. Rossin, “On the sandpile group of dual graphs”, European J. Combin., 21:4 (2000), 447–459
- P. J. Davis, Circulant matrices, 2nd ed., AMS Chelsea Publishing, New York, NY, 1994
- D. Dhar, P. Ruelle, S. Sen, D.-N. Verma, “Algebraic aspects of Abelian sandpile models”, J. Phys. A: Math. Gen., 28:4 (1995), 805–831
- С. А. Евдокимов, И. Н. Пономаренко, “Распознавание и проверка изоморфизма циркулянтных графов за полиномиальное время”, Алгебра и анализ, 15:6 (2003), 1–34
- G. Everest, T. Ward, Heights of polynomials and entropy in algebraic dynamics, Universitext, Springer-Verlag London, Ltd., London, 2013, 212 pp.
- C. Godsil, G. Royle, Algebraic graph theory, Grad. Texts in Math., 207, Springer-Verlag, New York, 2001, xx+439 pp.
- G. Goel, D. Perkinson, “Critical groups of iterated cones”, Linear Algebra Appl., 567 (2019), 138–142
- C. M. Gordon, “A short proof of a theorem of Plans on the homology of the branched cyclic coverings of a knot”, Bull. Amer. Math. Soc., 77 (1971), 85–87
- J. L. Gross, T. W. Tucker, Topological graph theory, Wiley-Intersci. Ser. Discrete Math. Optim., John Wiley & Sons, Inc., New York, 1987, xvi+351 pp.
- L. A. Grunwald, Young Soo Kwon, I. A. Mednykh, “Counting rooted spanning forests for circulant foliation over a graph”, Tohoku Math. J. (2), 74:4 (2022), 535–548
- L. A. Grunwald, I. A. Mednykh, “On the Jacobian group of a cone over a circulant graph”, Математические заметки СВФУ, 28:2 (2021), 88–101
- L. A. Grunwald, I. A. Mednykh, “The number of rooted forests in circulant graphs”, Ars Math. Contemp., 22:4 (2022), 10, 12 pp.
- I. Gutman, B. Mohar, “The quasi-Wiener and the Kirchhoff indices coincide”, J. Chem. Inf. Comput. Sci., 36:5 (1996), 982–985
- A. J. Guttmann, M. D. Rogers, “Spanning tree generating functions and Mahler measures”, J. Phys. A, 45:49 (2012), 494001, 24 pp.
- A. J. W. Hilton, “Spanning trees and Fibonacci and Lucas numbers”, Fibonacci Quart., 12 (1974), 259–262
- J. D. Horton, I. Z. Bouwer, “Symmetric $Y$-graphs and $H$-graphs”, J. Combin. Theory Ser. B, 53:1 (1991), 114–129
- Yaoping Hou, Chingwah Woo, Pingge Chen, “On the sandpile group of the square cycle $C_n^2$”, Linear Algebra Appl., 418:2-3 (2006), 457–467
- Danrun Huang, “A cyclic six-term exact sequence for block matrices over a PID”, Linear Multilinear Algebra, 49:2 (2001), 91–114
- B. Jacobson, A. Niedermaier, V. Reiner, “Critical groups for complete multipartite graphs and Cartesian products of complete graphs”, J. Graph Theory, 44:3 (2003), 231–250
- J. L. V. W. Jensen, “Sur un nouvel et important theorème de la theorie des fonctions”, Acta Math., 22:1 (1899), 359–364
- Yinglie Jin, Chunlin Lin, “Enumeration for spanning forests of complete bipartite graphs”, Ars Combin., 70 (2004), 135–138
- M. Kagan, B. Mata, “A physics perspective on the resistance distance for graphs”, Math. Comput. Sci., 13:1-2 (2019), 105–115
- A. K. Kelmans, V. M. Chelnokov, “A certain polynomial of a graph and graphs with an extremal number of trees”, J. Combin. Theory Ser. B, 16:3 (1974), 197–214
- G. Kirchhoff, “Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird”, Ann. Phys. Chem., 72:12 (1847), 497–508
- D. J. Klein, M. Randic, “Resistance distance”, J. Math. Chem., 12:1-4 (1993), 81–95
- O. Knill, “Cauchy–Binet for pseudo-determinants”, Linear Algebra Appl., 459 (2014), 522–547
- M. Kotani, T. Sunada, “Jacobian tori associated with a finite graph and its Abelian covering graphs”, Adv. in Appl. Math., 24:2 (2000), 89–110
- Y. S. Kwon, A. D. Mednykh, I. A. Mednykh, “On Jacobian group and complexity of the generalized Petersen graph $GP(n,k)$ through Chebyshev polynomials”, Linear Algebra Appl., 529 (2017), 355–373
- Y. S. Kwon, A. D. Mednykh, I. A. Mednykh, On complexity of cyclic coverings of graphs, 2018, 19 pp.
- Y. S. Kwon, A. D. Mednykh, I. A. Mednykh, “Complexity of the circulant foliation over a graph”, J. Algebraic Combin., 53:1 (2021), 115–129
- D. H. Lehmer, “Factorization of certain cyclotomic functions”, Ann. of Math. (2), 34:3 (1933), 461–479
- C. J. Liu, Yutze Chow, “Enumeration of forests in a graph”, Proc. Amer. Math. Soc., 83:3 (1981), 659–662
- D. Lorenzini, “Smith normal form and Laplacians”, J. Combin. Theory Ser. B, 98:6 (2008), 1271–1300
- J. Louis, “A formula for the number of spanning trees in circulant graphs with nonfixed generators and discrete tori”, Bull. Aust. Math. Soc., 92:3 (2015), 365–373
- I. Lukovits, S. Nikolic, N. Trinajstic, “Resistance distance in regular graphs”, Int. J. Quantum Chem., 71:3 (1999), 217–225
- Ye Luzhen, “On the Kirchhoff index of some toroidal lattices”, Linear Multilinear Algebra, 59:6 (2011), 645–650
- K. Mahler, “On some inequalities for polynomials in several variables”, J. London Math. Soc., 37 (1962), 341–344
- У. Масси, Дж. Столлингс, Алгебраическая топология. Введение, Мир, М., 1977, 344 с.
- А. Д. Медных, И. А. Медных, “О строении группы якобиана циркулянтных графов”, Докл. РАН, 469:5 (2016), 539–543
- А. Д. Медных, И. А. Медных, “Об асимптотике и арифметических свойствах функции сложности циркулянтных графов”, Докл. РАН, 479:4 (2018), 363–367
- A. D. Mednykh, I. A. Mednykh, “The number of spanning trees in circulant graphs, its arithmetic properties and asymptotic”, Discrete Math., 342:6 (2019), 1772–1781
- А. Д. Медных, И. А. Медных, “О строении критической группы циркулянтного графа с непостоянными скачками”, УМН, 75:1(451) (2020), 197–198
- А. Д. Медных, И. А. Медных, “Индекс Кирхгофа для циркулянтных графов и его асимптотика”, Докл. РАН. Матем., информ., проц. упр., 494 (2020), 43–47
- A. D. Mednykh, I. A. Mednykh, “On rationality of generating function for the number of spanning trees in circulant graphs”, Algebra Colloq., 27:1 (2020), 87–94
- А. Д. Медных, И. А. Медных, “О теореме Планса и периодичности якобианов циркулянтных графов”, Докл. РАН. Матем., информ., проц. упр., 498 (2021), 51–54
- A. Mednykh, I. Mednykh, “Complexity of circulant graphs with non-fixed jumps, its arithmetic properties and asymptotics”, Ars Math. Contemp., 23:1 (2023), 8, 16 pp.
- I. A. Mednykh, “On Jacobian group and complexity of the $I$-graph $I(n,k,l)$ through Chebyshev polynomials”, Arc Math. Contemp., 15:2 (2018), 467–485
- I. A. Mednykh, M. A. Zindinova, “On the structure of Picard group for Moebius ladder”, Сиб. электрон. матем. изв., 8 (2011), 54–61
- B. Mohar, “The Laplacian spectrum of graphs”, Graph theory, combinatorics, and applications (Kalamazoo, MI, 1988), v. 2, Wiley-Intersci. Publ., John Wiley & Sons, Inc., New York, 1991, 871–898
- M. Muzychuk, “A solution of the isomorphism problem for circulant graphs”, Proc. London Math. Soc. (3), 88:1 (2004), 1–41
- N. Neumärker, The arithmetic structure of discrete dynamical systems on the torus, PhD thesis, Univ. Bielefeld, Bielefeld, 2012, 92 pp., pp.
- J. L. Palacios, “Closed-form formulas for Kirchhoff index”, Int. J. Quantum Chem., 81:2 (2001), 135–140
- A. Plans, “Aportacion al estudio de los grupos de homologia de los recubrimientos ciclicos ramificados correspondientes a un nudo”, Rev. Acad. Ci. Madrid, 47 (1953), 161–193
- В. В. Прасолов, Многочлены, 3-е изд., МЦНМО, М., 2003, 336 с.
- M. Sakuma, “Homology of Abelian coverings of links and spatial graphs”, Canad. J. Math., 47:1 (1995), 201–224
- J. Sedlaček, “On the number of spanning trees of finite graphs”, Časopis Pěst. Mat., 94:2 (1969), 217–221
- J. Sedlacěk, “On the skeletons of a graph or digraph”, Combinatorial structures and their applications (Calgary, 1969), Gordon and Breach Sci. Publ., New York–London–Paris, 1970, 387–391
- R. Shrock, F. Y. Wu, “Spanning trees on graphs and lattices in $d$ dimensions”, J. Phys. A, 33:21 (2000), 3881–3902
- D. S. Silver, S. G. Williams, Spanning trees and Mahler measure, 2016, 12 pp.
- D. S. Silver, S. G. Williams, Graph complexity and Mahler measure, 2017, 16 pp.
- Ch. Smyth, “The Mahler measure of algebraic numbers: a survey”, Number theory and polynomials, London Math. Soc. Lecture Note Ser., 352, Cambridge Univ. Press, Cambridge, 2008, 322–349
- A. Steimle, W. Staton, “The isomorphism classes of the generalized Petersen graphs”, Discrete Math., 309:1 (2009), 231–237
- W. H. Stevens, On the homology of branched cyclic covers of knots, PhD thesis, Louisiana State Univ. and Agricultural & Mechanical College, 1996, 40 pp.
- Weigang Sun, Shuai Wang, Jingyuan Zhang, “Counting spanning trees in prism and anti-prism graphs”, J. Appl. Anal. Comput., 6:1 (2016), 65–75
- L. Takacs, “On the number of distinct forests”, SIAM J. Discrete Math., 3:4 (1990), 574–581
- H. N. V. Templerley, M. E. Fisher, “Dimer problem in statistical mechanics – an exact result”, Philos. Mag. (8), 6:68 (1961), 1061–1063
- L. Weinberg, “Number of trees in a graph”, Proc. IRE, 46:12 (1958), 1954–1955
- H. Wiener, “Structural determination of paraffin boiling points”, J. Amer. Chem. Soc., 69:1 (1947), 17–20
- F. Y. Wu, “Number of spanning trees on a lattice”, J. Phys. A, 10:6 (1977), L113–L115
- Wenjun Xiao, I. Gutman, “Resistance distance and Laplacian spectrum”, Theor. Chem. Acc., 110 (2003), 284–289
- Heping Zhang, Yujun Yang, “Resistance distance and Kirchhoff index in circulant graphs”, Int. J. Quantum Chem., 107:2 (2007), 330–339
- Yuanping Zhang, Xuerong Yong, M. J. Golin, “The number of spanning trees in circulant graphs”, Discrete Math., 223:1-3 (2000), 337–350
- Yuanping Zhang, Xuerong Yong, M. J. Golin, “Chebyshev polynomials and spanning tree formulas for circulant and related graphs”, Discrete Math., 298:1-3 (2005), 334–364
- H.-Y. Zhu, D. J. Klein, I. Lukovits, “Extensions of the Wiener number”, J. Chem. Inf. Comput. Sci., 36:3 (1996), 420–428
Supplementary files
