Feynman checkers: towards algorithmic quantum theory
- Authors: Skopenkov M.B.1,2,3, Ustinov A.V.1,4
-
Affiliations:
- HSE University
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
- King Abdullah University of Science and Technology
- Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
- Issue: Vol 77, No 3 (2022)
- Pages: 73-160
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133698
- DOI: https://doi.org/10.4213/rm10025
- ID: 133698
Cite item
Abstract
About the authors
Mihail Borisovich Skopenkov
HSE University; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute); King Abdullah University of Science and Technology
Email: skopenkov@rambler.ru
Alexey Vladimirovich Ustinov
HSE University; Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
Email: ustinov.alexey@gmail.com
Doctor of physico-mathematical sciences, Associate professor
References
- A. Ambainis, E. Bach, A. Nayak, A. Vishwanath, J. Watrous, “One-dimensional quantum walks”, Proceedings of the thirty-third annual ACM symposium on theory of computing, ACM, New York, 2001, 37–49
- C. M. Bender, L. R. Mead, K. A. Milton, “Discrete time quantum mechanics”, Comput. Math. Appl., 28:10-12 (1994), 279–317
- C. M. Bender, K. A. Milton, D. H. Sharp, “Gauge invariance and the finite-element solution of the Schwinger model”, Phys. Rev. D (3), 31:2 (1985), 383–388
- I. Bialynicki-Birula, “Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata”, Phys. Rev. D (3), 49:12 (1994), 6920–6927
- P. Billingsley, Probability and measure, Wiley Ser. Probab. Math. Statist., 3rd ed., John Wiley & Sons, Inc., New York, 1995, xiv+593 pp.
- I. Bogdanov, Feynman checkers: the probability of direction reversal, 2020, 8 pp.
- M. J. Cantero, F. A. Grünbaum, L. Moral, L. Velazquez, “The CGMV method for quantum walks”, Quantum Inf. Process., 11:5 (2012), 1149–1192
- D. Chelkak, S. Smirnov, “Discrete complex analysis on isoradial graphs”, Adv. Math., 228:3 (2011), 1590–1630
- Li-Chen Chen, M. E. H. Ismail, “On asymptotics of Jacobi polynomials”, SIAM J. Math. Anal., 22:5 (1991), 1442–1449
- М. Дмитриев, Модель {“}шашки Фейнмана{rm”} с поглощением, 2022, 10 с.
- Р. Фейнман, КЭД: Странная теория света и вещества, Наука, М., 1988, 144 с.
- Р. П. Фейнман, А. Хиббс, Квантовая механика и интегралы по траекториям, Мир, М., 1968, 384 с.
- S. R. Finch, Mathematical constants, Encyclopedia Math. Appl., 94, Cambridge Univ. Press, Cambridge, 2003, xx+602 pp.
- G. B. Folland, Quantum field theory. A tourist guide for mathematicians, Math. Surveys Monogr., 149, Amer. Math. Soc., Providence, RI, 2008, xii+325 pp.
- B. Z. Foster, T. Jacobson, “Spin on a 4D Feynman checkerboard”, Internat. J. Theoret. Phys., 56:1 (2017), 129–144
- B. Gaveau, L. S. Schulman, “Dirac equation path integral: interpreting the Grassmann variables”, Nuovo Cimento D (1), 11:1-2 (1989), 31–51
- K. Georgopoulos, C. Emary, P. Zuliani, “Comparison of quantum-walk implementations on noisy intermediate-scale quantum computers”, Phys. Rev. A, 103:2 (2021), 022408, 10 pp.
- H. A. Gersch, “Feynman's relativistic chessboard as an Ising model”, Internat. J. Theoret. Phys., 20:7 (1981), 491–501
- И. С. Градштейн, И. М. Рыжик, Таблицы интегралов, сумм, рядов и произведений, 4-е изд., Физматгиз, М., 1963, 1100 с.
- G. Grimmett, S. Janson, P. F. Scudo, “Weak limits for quantum random walks”, Phys. Rev. E, 69:2 (2004), 026119
- M. N. Huxley, Area, lattice points, and exponential sums, London Math. Soc. Monogr. (N. S.), 13, The Clarendon Press, Oxford Univ. Press, New York, 1996, xii+494 pp.
- T. Jacobson, “Feynman's checkerboard and other games”, Non-linear equations in classical and quantum field theory (Meudon/Paris, 1983/1984), Lecture Notes in Phys., 226, Springer, Berlin, 1985, 386–395
- T. Jacobson, L. S. Schulman, “Quantum stochastics: the passage from a relativistic to a non-relativistic path integral”, J. Phys. A, 17:2 (1984), 375–383
- P. Jizba, “Feynman checkerboard picture and neutrino oscillations”, J. Phys. Conf. Ser., 626 (2015), 012048, 11 pp.
- G. L. Jones, “Complex temperatures and phase transitions”, J. Math. Phys., 7:11 (1966), 2000–2005
- А. А. Карацуба, Основы аналитической теории чисел, 2-е изд., Наука, М., 1983, 240 с.
- J. Kempe, “Quantum random walks: an introductory overview”, Contemp. Phys., 50:1 (2009), 339–359
- R. Kenyon, “The Laplacian and Dirac operators on critical planar graphs”, Invent. Math., 150:2 (2002), 409–439
- N. Konno, “A new type of limit theorems for the one-dimensional quantum random walk”, J. Math. Soc. Japan, 57:4 (2005), 1179–1195
- N. Konno, “Quantum walks”, Quantum potential theory, Lecture Notes in Math., 1954, Springer, Berlin, 2008, 309–452
- N. Konno, “Quantum walks”, Sugaku Expositions, 33:2 (2020), 135–158
- A. B. J. Kuijlaars, A. Martinez-Finkelshtein, “Strong asymptotics for Jacobi polynomials with varying nonstandard parameters”, J. Anal. Math., 94 (2004), 195–234
- M. Maeda, H. Sasaki, E. Segawa, A. Suzuki, K. Suzuki, “Scattering and inverse scattering for nonlinear quantum walks”, Discrete Contin. Dyn. Syst., 38:7 (2018), 3687–3703
- J. Maldacena, “The symmetry and simplicity of the laws of physics and the Higgs boson”, European J. Phys., 37:1 (2016), 015802, 25 pp.
- V. Matveev, R. Shrock, “A connection between complex-temperature properties of the 1D and 2D spin $s$ Ising model”, Phys. Lett. A, 204:5-6 (1995), 353–358
- J. V. Narlikar, “Path amplitudes for Dirac particles”, J. Indian Math. Soc. (N. S.), 36 (1972), 9–32
- I. Novikov, “Feynman checkers: the probability to find an electron vanishes nowhere inside the light cone”, Rev. Math. Phys., 2020 (to appear)
- G. N. Ord, “Classical particles and the Dirac equation with an electromagnetic field”, Chaos Solitons Fractals, 8:5, Special issue (1997), 727–741
- G. N. Ord, J. A. Gualtieri, “The Feynman propagator from a single path”, Phys. Rev. Lett., 89:25 (2002), 250403
- F. Ozhegov, Feynman checkers: external electromagnetic field and asymptotic properties, preprint, 2021
- М. Е. Пескин, Д. В. Шрeдер, Введение в квантовую теорию поля, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 784 с.
- S. S. Schweber, “Feynman and the visualization of space-time processes”, Rev. Modern Phys., 58:2 (1986), 449–508
- М. Б. Скопенков, А. А. Пахарев, А. В. Устинов, “Сквозь сеть сопротивлений”, Матем. просв., серия 3, 18, МЦНМО, М., 2014, 33–65
- M. Skopenkov, A. Ustinov, Feynman checkers: towards algorithmic quantum theory, 2020, 55 pp.
- M. Skopenkov, A. Ustinov, Feynman checkers: auxiliary computations,par, Last accessed 31.12.2021
- M. Skopenkov, A. Ustinov, Feynman checkers: Minkowskian lattice quantum field theory, preprint, 2022
- N. J. A. Sloane (ed.), The on-line encyclopedia of integer sequences
- R. P. Stanley, “Irreducible symmetric group characters of rectangular shape”, Sem. Lothar. Combin., 50 (2003/04), Art. B50d, 11 pp.
- T. Sunada, T. Tate, “Asymptotic behavior of quantum walks on the line”, J. Funct. Anal., 262:6 (2012), 2608–2645
- Г. Сегe, Ортогональные многочлены, Физматлит, М., 1962, 500 с.
- S. E. Venegas-Andraca, “Quantum walks: a comprehensive review”, Quantum Inf. Process., 11:5 (2012), 1015–1106
- J. Yepez, “Relativistic path integral as a lattice-based quantum algorithm”, Quantum Inf. Process., 4:6 (2005), 471–509
- P. Zakorko, Feynman checkers: a uniform approximation of the wave function by Airy function, preprint, 2021
Supplementary files
