Elements of hyperbolic theory on an infinite-dimensional torus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

On the infinite-dimensional torus $\mathbb{T}^{\infty}=E/2\pi\mathbb{Z}^{\infty}$, where $E$ is an infinite-dimensional Banach torus and $\mathbb{Z}^{\infty}$ is an abstract integer lattice, a special class of diffeomorphisms $\operatorname{Diff}(\mathbb{T}^{\infty})$ is considered. It consists of the maps $G\colon\mathbb{T}^{\infty}\to\mathbb{T}^{\infty}$ whose differentials $DG$ and $D(G^{-1})$ are uniformly bounded and uniformly continuous on $\mathbb{T}^{\infty}$. For diffeomorphisms in $\operatorname{Diff}(\mathbb{T}^{\infty})$ elements of hyperbolic theory are presented systematically, starting with definitions and some auxiliary facts and ending by more advanced results. The latter include a criterion for hyperbolicity, a theorem on the $C^1$-roughness of hyperbolicity for diffeomorphisms in $\operatorname{Diff}(\mathbb{T}^{\infty})$, the Hadamard–Perron theorem, as well as a fundamental result of hyperbolic theory, the fact that each Anosov diffeomorphism $G\in\operatorname{Diff}(\mathbb{T}^{\infty})$ has a stable and an unstable invariant foliation.Bibliography: 34 titles.

About the authors

Sergey Dmitrievich Glyzin

P.G. Demidov Yaroslavl State University

Email: glyzin.s@gmail.com
Doctor of physico-mathematical sciences, Professor

Andrei Yurevich Kolesov

Email: kolesov@uniyar.ac.ru
Doctor of physico-mathematical sciences, Professor

References

  1. С. Смейл, “Дифференцируемые динамические системы”, УМН, 25:1(151) (1970), 113–185
  2. Д. В. Аносов, В. В. Солодов, “Гл. 1. Гиперболические множества”, Динамические системы с гиперболическим поведением. Динамические системы – 9, Итоги науки и техн. Сер. Соврем. пробл. матем. Фундам. направления, 66, ВИНИТИ, М., 1991, 12–99
  3. Д. В. Аносов, “Геодезические потоки на замкнутых римановых многообразиях отрицательной кривизны”, Тр. МИАН СССР, 90, 1967, 3–210
  4. А. Б. Каток, Б. Хасселблат, Введение в современную теорию динамических систем, Факториал, М., 1999, 768 с.
  5. А. Б. Каток, Б. Хасселблат, Введение в теорию динамических систем с обзором последних достижений, МЦНМО, М., 2005, 464 с.
  6. С. Ю. Пилюгин, Пространства динамических систем, НИЦ “Регулярная и хаотическая динамика”, Ин-т компьютерных исследований, М.–Ижевск, 2008, 272 с.
  7. В. З. Гринес, О. В. Починка, Введение в топологическую классификацию каскадов на многообразиях размерности два и три, НИЦ “Регулярная и хаотическая динамика”, Ин-т компьютерных исследований, М.–Ижевск, 2011, 424 с.
  8. V. Grines, E. Zhuzhoma, Surface laminations and chaotic dynamical systems, Izhevsk Institute of Computer Science, Izhevsk, 2021, 502 pp.
  9. Ж. Палис, В. ди Мелу, Геометрическая теория динамических систем. Введение, Мир, М., 1986, 302 с.
  10. Я. Б. Песин, Лекции по теории частичной гиперболичности и устойчивой эргодичности, МЦНМО, М., 2006, 144 с.
  11. C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd corr. ed., CRC Press, Boca Raton, FL, 1999, xiv+506 pp.
  12. J. Palis, F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Fractal dimensions and infinitely many attractors, Cambridge Stud. Adv. Math., 35, Cambridge Univ. Press, Cambridge, 1993, x+234 pp.
  13. D. Ruelle, “Large volume limit of the distribution of characteristic exponents in turbulence”, Comm. Math. Phys., 87:2 (1982), 287–302
  14. R. Mañe, Ergodic theory and differentiable dynamics, Transl. from the Portuguese, Ergeb. Math. Grenzgeb. (3), 8, Springer-Verlag, Berlin, 1987, xii+317 pp.
  15. P. Thieullen, “Entropy and the Hausdorff dimension for infinite-dimensional dynamical systems”, J. Dynam. Differential Equations, 4:1 (1992), 127–159
  16. H. M. Hastings, “On expansive homeomorphisms of the infinite torus”, The structure of attractors in dynamical systems (North Dakota State Univ., Fargo, ND, 1977), Lecture Notes in Math., 668, Springer, Berlin, 1978, 142–149
  17. R. Mañe, “Expansive homeomorphisms and topological dimension”, Trans. Amer. Math. Soc., 252 (1979), 313–319
  18. С. Д. Глызин, А. Ю. Колесов, Н. Х. Розов, “Растягивающие эндоморфизмы на бесконечномерном торе”, Функц. анализ и его прил., 54:4 (2020), 17–36
  19. С. Д. Глызин, А. Ю. Колесов, Н. Х. Розов, “Соленоидальные аттракторы диффеоморфизмов кольцевых множеств”, УМН, 75:2(452) (2020), 3–60
  20. С. Д. Глызин, А. Ю. Колесов, Н. Х. Розов, “Об одном классе структурно-устойчивых эндоморфизмов на бесконечномерном торе”, Дифференц. уравнения, 56:10 (2020), 1412–1416
  21. С. Д. Глызин, А. Ю. Колесов, Н. Х. Розов, “Об одном классе диффеоморфизмов Аносова на бесконечномерном торе”, Изв. РАН. Сер. матем., 85:2 (2021), 3–59
  22. С. Д. Глызин, А. Ю. Колесов, “Критерий гиперболичности одного класса диффеоморфизмов на бесконечномерном торе”, Матем. сб., 213:2 (2022), 50–95
  23. B. Jessen, “The theory of integration in a space of an infinite number of dimensions”, Acta Math., 63:1 (1934), 249–323
  24. С. С. Платонов, “О некоторых задачах теории приближения функций на бесконечномерном торе: аналоги теорем Джексона”, Алгебра и анализ, 26:6 (2014), 99–120
  25. D. Kosz, “On differentiation of integrals in the infinite-dimensional torus”, Studia Math., 258:1 (2021), 103–119
  26. S. Banach, S. Mazur, “Über mehrdeutige stetige Abbildungen”, Studia Math., 5 (1934), 174–178
  27. R. Plastock, “Homeomorphisms between Banach spaces”, Trans. Amer. Math. Soc., 200 (1974), 169–183
  28. Л. В. Канторович, Г. П. Акилов, Функциональный анализ, 2-е изд., Наука, М., 1977, 742 с.
  29. С. Д. Глызин, А. Ю. Колесов, Н. Х. Розов, “О некоторых достаточных условиях гиперболичности”, Труды МИАН, 308 (2020), 116–134
  30. J. D. Farmer, E. Ott, J. A. Yorke, “The dimension of chaotic attractors”, Phys. D, 7:1-3 (1983), 153–180
  31. А. Ю. Колесов, Н. Х. Розов, В. А. Садовничий, “О гиперболичности эндоморфизмов тора”, Матем. заметки, 105:2 (2019), 251–268
  32. J. Hadamard, “Sur l'iteration et les solutions asymptotiques des equations differentielles”, Bull. Soc. Math. France, 29 (1901), 224–228
  33. O. Perron, “Über Stabilität und asymptotisches Verhalten der Lösungen eines Systems endlicher Differenzengleichungen”, J. Reine Angew. Math., 1929:161 (1929), 41–64
  34. Л. П. Шильников, А. Л. Шильников, Д. В. Тураев, Л. Чуа, Методы качественной теории в нелинейной динамике, Ч. 1, Ин-т компьютерных исследований, М.–Ижевск, 2004, 416 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Glyzin S.D., Kolesov A.Y.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).