Tetrahedron equation: algebra, topology, and integrability
- Авторлар: Talalaev D.V.1,2
-
Мекемелер:
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Centre of Integrable Systems, P.G. Demidov Yaroslavl State University
- Шығарылым: Том 76, № 4 (2021)
- Беттер: 139-176
- Бөлім: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133676
- DOI: https://doi.org/10.4213/rm10009
- ID: 133676
Дәйексөз келтіру
Аннотация
Негізгі сөздер
Авторлар туралы
Dmitry Talalaev
Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Centre of Integrable Systems, P.G. Demidov Yaroslavl State University
Email: dtalalaev@yandex.ru
Doctor of physico-mathematical sciences, no status
Әдебиет тізімі
- А. Б. Замолодчиков, “Уравнения тетраэдров и интегрируемые системы в трехмерном пространстве”, ЖЭТФ, 79:2 (1980), 641–664
- V. F. R. Jones, “A polynomial invariant for knots via von Neumann algebras”, Bull. Amer. Math. Soc. (N.S.), 12:1 (1985), 103–111
- К. Кассель, Квантовые группы, Grad. Texts in Math., 155, Фазис, М., 1999, xxi+663 пер. с англ.: с.
- V. G. Drinfel'd, “On some unsolved problems in quantum group theory”, Quantum groups (Leningrad, 1990), Lecture Notes in Math., 1510, Springer, Berlin, 1992, 1–8
- Л. А. Тахтаджян, Л. Д. Фаддеев, “Квантовый метод обратной задачи и $XYZ$ модель Гейзенберга”, УМН, 34:5(209) (1979), 13–63
- А. П. Веселов, “Интегрируемые отображения”, УМН, 46:5(281) (1991), 3–45
- A. P. Veselov, “Yang–Baxter maps and integrable dynamics”, Phys. Lett. A, 314:3 (2003), 214–221
- V. V. Bazhanov, S. M. Sergeev, “Yang–Baxter maps, discrete integrable equations and quantum groups”, Nuclear Phys. B, 926 (2018), 509–543
- В. М. Бухштабер, “Отображения Янга–Бакстера”, УМН, 53:6(324) (1998), 241–242
- И. М. Кричевер, “Уравнения Бакстера и алгебраическая геометрия”, Функц. анализ и его прил., 15:2 (1981), 22–35
- В. Г. Горбунов, К. Корфф, К. Строппель, “Алгебры Янга–Бакстера, алгебра конволюций и многообразия Грассмана”, УМН, 75:5(455) (2020), 3–58
- B. Sutherlend, “Two-dimensional hydrogen bonded crystals without the ice rule”, J. Math. Phys., 11:11 (1970), 3183–3186
- R. J. Baxter, “One-dimensional anisotropic Heisenberg chain”, Phys. Rev. Lett., 26:14 (1971), 834
- R. J. Baxter, “One-dimensional anisotropic Heisenberg chain”, Ann. Physics, 70:2 (1972), 323–337
- D. V. Talalaev, “Zamolodchikov tetrahedral equation and higher Hamiltonians of $2d$ quantum integrable systems”, SIGMA, 13 (2017), 031, 14 pp.
- J. M. Maillet, F. Nijhoff, “Integrability for multidimensional lattice models”, Phys. Lett. B, 224:4 (1989), 389–396
- N. Reshetikhin, V. G. Turaev, “Invariants of 3-manifolds via link polynomials and quantum groups”, Invent. Math., 103 (1991), 547–597
- V. M. Buchstaber, “Semigroups of maps into groups, operator doubles, and complex cobordisms”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Adv. Math. Sci., 27, Amer. Math. Soc., Providence, RI, 1995, 9–31
- В. Г. Дринфельд, “О почти кокоммутативных алгебрах Хопфа”, Алгебра и анализ, 1:2 (1989), 30–46
- I. G. Korepanov, G. I. Sharygin, D. V. Talalaev, “Cohomologies of $n$-simplex relations”, Math. Proc. Cambridge Philos. Soc., 161:2 (2016), 203–222
- Yu. I. Manin, V. V. Schechtman, “Arrangements of hyperplanes, higher braid groups and higher Bruhat orders”, Algebraic number theory – in honour of K. Iwasawa, Adv. Stud. Pure Math., 17, Academic Press, Boston, MA, 1989, 289–308
- Yu. I. Manin, V. V. Schechtman, “Arrangements of real hyperplanes and Zamolodchikov equations”, Group theoretical methods in physics (Yurmala, 1985), v. 1, VNU Sci. Press, Utrecht, 1986, 151–165
- M. M. Kapranov, V. A. Voevodsky, “2-categories and Zamolodchikov tetrahedra equations”, Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991), Proc. Sympos. Pure Math., 56, Part 2, Amer. Math. Soc., Providence, RI, 1994, 177–259
- В. И. Данилов, А. В. Карзанов, Г. А. Кошевой, “Кубильяжи циклических зонотопов”, УМН, 74:6(450) (2019), 55–118
- F. Gray, Pulse code communication, U.S. Patent 2632058, 1953, 18 pp.
- L. D. Faddeev, N. Yu. Reshetikhin, L. A. Takhtajan, “Quantization of Lie groups and Lie algebras”, Algebraic analysis, v. I, Academic Press, Boston, MA, 1988, 129–139
- S. MacLane, “Categorical algebra'”, Bull. Amer. Math. Soc., 71 (1965), 40–106
- R. Fenn, M. Jordan-Santana, L. Kauffman, “Biquandles and virtual links”, Topology Appl., 145:1-3 (2004), 157–175
- W. Rump, “A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter equation”, Adv. Math., 193:1 (2005), 40–55
- W. Rump, “Braces, radical rings, and the quantum Yang–Baxter equation”, J. Algebra, 307:1 (2007), 153–170
- V. Lebed, L. Vendramin, “On structure groups of set-theoretic solutions to the Yang–Baxter equation”, Proc. Edinb. Math. Soc. (2), 62:3 (2019), 683–717
- В. В. Соколов, “Классификация постоянных решений ассоциативного уравнения Янга–Бакстера на алгебре $operatorname{Mat}_3$”, ТМФ, 176:3 (2013), 385–392
- M. Van den Bergh, “Double Poisson algebras”, Trans. Amer. Math. Soc., 360:11 (2008), 5711–5769
- М. М. Преображенская, Д. В. Талалаев, “Расширение групп, расслоения и параметрическое уравнение Янга–Бакстера”, ТМФ, 207:2 (2021), 310–318
- V. M. Buchstaber, S. Igonin, S. Konstantinou-Rizos, M. Preobrazhenskaia, “Yang–Baxter maps, Darboux transformations, and linear approximations of refactorisation problems”, J. Phys. A, 53:50 (2020), 504002, 23 pp.
- A. S. Crans, Lie 2-algebras, Ph.D. Thesis, Univ. of California, Riverside, 2004, v+114 pp.
- E. Neher, Jordan triple systems by the grid approach, Lecture Notes in Math., 1280, Springer-Verlag, Berlin, 1987, xii+193 pp.
- J. M. Maillet, “On pentagon and tetrahedron equations”, Алгебра и анализ, 6:2 (1994), 206–214
- R. M. Kashaev, S. M. Sergeev, “On pentagon, ten-term, and tetrahedron relations”, Comm. Math. Phys., 195:2 (1998), 309–319
- D. Bar-Natan, “On Khovanov's categorification of the Jones polynomial”, Algebr. Geom. Topol., 2 (2002), 337–370
- D. Roseman, “Reidemeister-type moves for surfaces in four-dimensional space”, Knot theory (Warsaw, 1995), Banach Center Publ., 42, Polish Acad. Sci. Inst. Math., Warsaw, 1998, 347–380
- J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, M. Saito, “Quandle cohomology and state-sum invariants of knotted curves and surfaces”, Trans. Amer. Math. Soc., 355:10 (2003), 3947–3989
- P. Cotta-Ramusino, M. Martellini, “BF theories and 2-knots”, Knots and quantum gravity (Riverside, CA, 1993), Oxford Lecture Ser. Math. Appl., 1, Oxford Sci. Publ., Oxford Univ. Press, New York, 1994, 169–189
- L. Crane, D. Yetter, “A categorical construction of 4d topological quantum field theories”, Quantum topology, Ser. Knots Everything, 3, World Sci. Publ., River Edge, NJ, 1993, 120–130
- Р. Бэкстер, Точно решаемые модели в статистической механике, Мир, М., 1985, 488 с.
- S. Istrail, “Statistical mechanics, three-dimensionality and NP-completeness. I. Universality of intracatability for the partition function of the Ising model across non-planar surfaces”, Proceedings of the thirty-second annual ACM symposium on theory of computing (STOC '00) (Portland, OR, 2000), ACM, New York, 2000, 87–96
- S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi, “Solving the 3D Ising model with the conformal bootstrap”, Phys. Rev. D, 86:2 (2012), 025022, 32 pp.
- D. V. Talalaev, “Towards integrable structure in 3d Ising model”, J. Geom. Phys., 148 (2020), 103545, 10 pp.
- М. Минский, С. Пейперт, Персептроны, М., Мир, 1971, 261 с.
- W. A. Little, “The existence of persistent states in the brain”, Math. Biosci., 19:1-2 (1974), 101–120
- J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities”, Proc. Nat. Acad. Sci. U.S.A., 79:8 (1982), 2554–2558
- S. Haykin, Neural networks and learning machines, 3rd ed., Prentice Hall, Upper Saddle River, NJ, 2008, 906 pp.
- S. Recanatesi, M. Katkov, S. Romani, M. Tsodyks, “Neural network model of memory retrieval”, Front. Comput. Neurosci., 9 (2015), 149
- S. Romani, M. Tsodyks, “Short-term plasticity based network model of place cells dynamics”, Hippocampus, 25 (2015), 94–105
- H. Sompolinsky, I. Kanter, “Temporal association in asymmetric neural networks”, Phys. Rev. Lett., 57:22 (1986), 2861–2864
- A. A. Frolov, D. Husek, I. P. Muraviev, “Informational capacity and recall quality in sparsely encoded Hopfield-like neural network: analytical approaches and computer simulation”, Neural Netw., 10:5 (1997), 845–855
- R. Roscher, B. Bohn, M. F. Duarte, J. Garcke, “Explainable machine learning for scientific insights and discoveries”, IEEE Access, 8 (2020), 42200–42216
- N. Pospelov, S. Nechaev, K. Anokhin, O. Valba, V. Avetisov, A. Gorsky, “Spectral peculiarity and criticality of a human connectome”, Phys. Life Rev., 31 (2019), 240–256
- D. J. Amit, H. Gutfreund, H. Sompolinsky, “Statistical mechanics of neural networks near saturation”, Ann. Physics, 173:1 (1987), 30–67
- J. Hietarinta, “Permutation-type solutions to the Yang–Baxter and other $n$-simplex equations”, J. Phys. A, 30:13 (1997), 4757–4771
- V. V. Bazhanov, S. M. Sergeev, “Zamolodchikov's tetrahedron equation and hidden structure of quantum groups”, J. Phys. A, 39:13 (2006), 3295–3310
- Р. М. Кашаев, И. Г. Корепанов, С. М. Сергеев, “Функциональное уравнение тетраэдров”, ТМФ, 117:3 (1998), 370–384
- S. M. Sergeev, “Supertetrahedra and superalgebras”, J. Math. Phys., 50:8 (2009), 083519, 21 pp.
- V. V. Bazhanov, V. V. Mangazeev, S. M. Sergeev, “Quantum geometry of three-dimensional lattices”, J. Stat. Mech. Theory Exp., 2008:7 (2008), P07004, 27 pp.
- I. G. Korepanov, “Tetrahedral Zamolodchikov algebras corresponding to Baxter's $L$-operators”, Comm. Math. Phys., 154:1 (1993), 85–97
- R. M. Kashaev, “On discrete three-dimensional equations associated with the local Yang–Baxter relation”, Lett. Math. Phys., 38:4 (1996), 389–397
- S. M. Sergeev, “Solutions of the functional tetrahedron equation connected with the local Yang–Baxter equation for the ferro-electric condition”, Lett. Math. Phys., 45:2 (1998), 113–119
- J. Hietarinta, “Labelling schemes for tetrahedron equations and dualities between them”, J. Phys. A, 27:17 (1994), 5727–5748
- A. Berenstein, S. Fomin, A. Zelevinsky, “Parametrizations of canonical bases and totally positive matrices”, Adv. Math., 122:1 (1996), 49–149
- R. M. Kashaev, “On discrete three-dimensional equations associated with the local Yang–Baxter relation”, Lett. Math. Phys., 38:4 (1996), 389–397
- V. Gorbounov, D. Talalaev, “Electrical varieties as vertex integrable statistical models”, J. Phys. A, 53 (2020), 454001, 28 pp.
- B. Bychkov, A. Kazakov, D. Talalaev, “Functional relations on anisotropic Potts models: from Biggs formula to the tetrahedron equation”, SIGMA, 17 (2021), 035, 30 pp.
- E. C. Zeeman, “Twisting spun knots”, Trans. Amer. Math. Soc., 115 (1965), 471–495
- J. S. Carter, M. Elhamdadi, M. Saito, “Homology theory for the set-theoretic Yang–Baxter equation and knot invariants from generalizations of quandles”, Fund. Math., 184 (2004), 31–54
- С. В. Матвеев, “Дистрибутивные группоиды в теории узлов”, Матем. сб., 119(161):1(9) (1982), 78–88
- И. Г. Корепанов, Д. В. Талалаев, Г. И. Шарыгин, “Интегрируемые трехмерные статистические модели на шестивалентных графах”, Топология и физика, Сборник статей. К 80-летию со дня рождения академика Сергея Петровича Новикова, Труды МИАН, 302, МАИК “Наука/Интерпериодика”, М., 2018, 214–233
- J. M. Maillet, “Lax equations and quantum groups”, Phys. Lett. B, 245:3-4 (1990), 480–486
- Д. В. Осипов, “Соответствие Кричевера для алгебраических многообразий”, Изв. РАН. Сер. матем., 65:5 (2001), 91–128
- Д. В. Осипов, “Неразветвленное двумерное соответствие Ленглендса”, Изв. РАН. Cер. матем., 77:4 (2013), 73–102
- М. В. Федорюк, Обыкновенные дифференциальные уравнения, 2-е изд., перераб. и доп., Наука, М., 1985, 448 с.
- D. V. Talalaev, “Hopfield neural network and anisotropic Ising model”, NEUROINFORMATICS 2020: Advances in neural computation, machine learning, and cognitive research IV, Stud. Comput. Intell., 925, Springer, Cham, 2021, 381–386
- Yi Da, Ge Xiurun, “An improved PSO-based ANN with simulated annealing technique”, Neurocomputing, 63 (2005), 527–533
Қосымша файлдар
