Chaos and integrability in $\operatorname{SL}(2,\mathbb R)$-geometry
- Authors: Bolsinov A.V.1,2,3, Veselov A.P.1,2,4, Ye Y.5
-
Affiliations:
- Department of Mathematical Sciences, Loughborough University
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Moscow Center for Fundamental and Applied Mathematics
- Steklov Mathematical Institute of Russian Academy of Sciences
- Xian Jiaotong-Liverpool University
- Issue: Vol 76, No 4 (2021)
- Pages: 3-36
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133670
- DOI: https://doi.org/10.4213/rm10008
- ID: 133670
Cite item
Abstract
About the authors
Aleksei Viktorovich Bolsinov
Department of Mathematical Sciences, Loughborough University; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics
Email: bolsinov@mail.ru
Doctor of physico-mathematical sciences, Professor
Aleksandr Petrovich Veselov
Department of Mathematical Sciences, Loughborough University; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Steklov Mathematical Institute of Russian Academy of Sciences
Email: A.P.Veselov@lboro.ac.uk
Doctor of physico-mathematical sciences, Professor
Yiru Ye
Xian Jiaotong-Liverpool University
Email: Y.Ye@lboro.ac.uk
References
- C. C. Adams, The knot book. An elementary introduction to the mathematical theory of knots, Rev. reprint of the 1994 original, Amer. Math. Soc., Providence, RI, 2004, xiv+307 pp.
- В. И. Арнольд, “Несколько замечаний о потоках линейных элементов и реперов”, Докл. АН СССР, 138:2 (1961), 255–257
- В. И. Арнольд, Математические методы классической механики, Наука, М., 1974, 431 с.
- E. Artin, “Ein mechanisches System mit quasiergodischen Bahnen”, Abh. Math. Sem. Univ. Hamburg, 3:1 (1924), 170–175
- Yu. Berest, P. Samuelson, “Double affine Hecke algebras and generalized Jones polynomials”, Compos. Math., 152:7 (2016), 1333–1384
- M. Bergeron, T. Pinsky, L. Silberman, “An upper bound for the volumes of complements of periodic geodesics”, Int. Math. Res. Not. IMRN, 2019:15 (2019), 4707–4729
- L. Bianchi, “Sugli spazii a tre dimensioni che ammettono un gruppo continuo di movimenti”, Mem. Soc. Ital. Sci. (3), 11 (1898), 267–352
- J. S. Birman, R. F. Williams, “Knotted periodic orbits in dynamical systems. I. Lorenz's equations”, Topology, 22:1 (1983), 47–82
- А. В. Болсинов, “Интегрируемые геодезические потоки на римановых многообразиях”, Совр. матем. и ее приложения, 1 (2003), 19–32
- A. Bolsinov, Jinrong Bao, “A note about integrable systems on low-dimensional Lie groups and Lie algebras”, Regul. Chaotic Dyn., 24:3 (2019), 266–280
- A. V. Bolsinov, I. A. Taimanov, “Integrable geodesic flows with positive topological entropy”, Invent. Math., 140:3 (2000), 639–650
- A. Brandts, T. Pinsky, L. Silberman, “Volumes of hyperbolic three-manifolds associated to modular links”, Symmetry, 11:10 (2019), 1206, 9 pp.
- K. Burns, G. P. Paternain, “Anosov magnetic flows, critical values and topological entropy”, Nonlinearity, 15:2 (2002), 281–314
- L. Butler, “A new class of homogeneous manifolds with Liouville-integrable geodesic flows”, C. R. Math. Acad. Sci. Soc. R. Can., 21:4 (1999), 127–131
- L. T. Butler, “Invariant fibrations of geodesic flows”, Topology, 44:4 (2005), 769–789
- К. Каратеодори, Конформное отображение, Современная математика, 5, Гостехиздат, М.–Л., 1934, 129 с.
- I. Cherednik, I. Danilenko, “DAHA and iterated torus knots”, Algebr. Geom. Topol., 16:2 (2016), 843–898
- D. Cooper, C. D. Hodgson, S. P. Kerckhoff, Three-dimensional orbifolds and cone-manifolds, MSJ Mem., 5, Math. Soc. Japan, Tokyo, 2000, x+170 pp.
- F. Dal'Bo, Geodesic and horocyclic trajectories, Universitext, Springer-Verlag London, Ltd., London; EDP Sciences, Les Ulis, 2011, xii+176 pp.
- Е. И. Динабург, “Связь между различными энтропийными характеристиками динамических систем”, Изв. АН СССР. Сер. матем., 35:2 (1971), 324–366
- М. П. до Кармо, Дифференциальная геометрия кривых и поверхностей, Ин-т компьютерных исследований, М.–Ижевск, 2013, 608 с.
- Б. А. Дубровин, С. П. Новиков, А. Т. Фоменко, Современная геометрия. Методы теории гомологий, Наука, М., 1984, 344 с.
- P. Foulon, B. Hasselblat, “Contact Anosov flows on hyperbolic 3-manifolds”, Geom. Topol., 17:2 (2013), 1225–1252
- E. Ghys, “Knots and dynamics”, International congress of mathematicians, v. 1, Eur. Math. Soc., Zürich, 2007, 247–277
- E. Ghys, J. Leys, Lorenz and modular flows: a visual introduction, 2006
- C. McA. Gordon, J. Luecke, “Knots are determined by their complements”, Bull. Amer. Math. Soc. (N. S.), 20:1 (1989), 83–87
- B. Gurevich, S. Katok, “Arithmetic coding and entropy for the positive geodesic flow on the modular surface”, Mosc. Math. J., 1:4 (2001), 569–582
- S. Halverscheid, A. Iannuzzi, “On naturally reductive left-invariant metrics of $operatorname{SL}(2,mathbb R)$”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 5:2 (2006), 171–187
- G. A. Hedlund, “Fuchsian groups and transitive horocycles”, Duke Math. J., 2:3 (1936), 530–542
- С. Хелгасон, Дифференциальная геометрия и симметрические пространства, Мир, М., 1964, 533 с.
- A. Katok, “Fifty years of entropy in dynamics: 1958–2007”, J. Mod. Dyn., 1:4 (2007), 545–596
- F. Klein, Ausgewählte Kapitel der Zahlentheorie, Vorlesung, gehalten im Wintersemester 1895/96. Ausgearbeitet von A. Sommerfeld, v. I, Göttingen, 1896, 391 pp.
- В. В. Козлов, “Топологические препятствия к интегрируемости натуральных механических систем”, Докл. АН СССР, 249:6 (1979), 1299–1302
- J. Llibre, “Brief survey on the topological entropy”, Discrete Contin. Dyn. Syst. Ser. B, 20:10 (2015), 3363–3374
- J. Llibre, R. S. MacKay, “A classification of braid types for diffeomorphisms of surfaces of genus zero with topological entropy zero”, J. London Math. Soc. (2), 42:3 (1990), 562–576
- E. N. Lorenz, “Deterministic nonperiodic flow”, J. Atmospheric Sci., 20:2 (1963), 130–141
- A. Manning, “Topological entropy for geodesic flows”, Ann. of Math. (2), 110:3 (1979), 567–573
- A. Mielke, “Finite elastoplasticity Lie groups and geodesics on $operatorname{SL}(d)$”, Geometry, mechanics and dynamics, Springer, New York, 2002, 61–90
- Дж. Милнор, Введение в алгебраическую $K$-теорию, Мир, М., 1974, 200 с.
- J. Milnor, “Curvatures of left invariant metrics on Lie groups”, Adv. Math., 21:3 (1976), 293–329
- J. A. G. Miranda, “Positive topological entropy for magnetic flows on surfaces”, Nonlinearity, 20:8 (2007), 2007–2031
- А. В. Моисеев, А. И. Нейштадт, “Фазовый портрет системы Лоренца при больших числах Рэлея”, Изв. РАН. МТТ, 1995, № 4, 23–30
- R. Montgomery, “A survey of singular curves in sub-Riemannian geometry”, J. Dynam. Control Systems, 1:1 (1995), 49–90
- J. Morgan, Gang Tian, The geometrization conjecture, Clay Math. Monogr., 5, Amer. Math. Soc., Providence, RI; Clay Math. Inst., Cambridge, MA, 2014, x+291 pp.
- J. Mostovoy, “Lattices in $mathbb C$ and finite subsets of a circle”, Amer. Math. Monthly, 111:4 (2004), 357–360
- P. T. Nagy, “On the tangent sphere bundle of a Riemannian 2-manifold”, Tôhoku Math. J. (2), 29:2 (1977), 203–208
- G. P. Paternain, “On the regularity of the Anosov splitting for twisted geodesic flows”, Math. Res. Lett., 4:6 (1997), 871–888
- Я. Б. Песин, “Характеристические показатели Ляпунова и гладкая эргодическая теория”, УМН, 32:4(196) (1977), 55–112
- K. A. Robbins, “Periodic solutions and bifurcation structure at high $R$ in the Lorenz model”, SIAM J. Appl. Math., 36:3 (1979), 457–472
- P. Samuelson, “Iterated torus knots and double affine Hecke algebras”, Int. Math. Res. Not. IMRN, 2019:9 (2019), 2848–2893
- P. Sarnak, “Linking numbers of modular knots”, Commun. Math. Anal., 8:2 (2010), 136–144
- S. Sasaki, “On the differential geometry of tangent bundles of Riemannian manifolds”, Tohoku Math. J. (2), 10:3 (1958), 338–354
- P. Scott, “The geometries of 3-manifolds”, Bull. London Math. Soc., 15:5 (1983), 401–487
- J. Stillwell, “Poincare and the early history of 3-manifolds”, Bull. Amer. Math. Soc., 49:4 (2012), 555–576
- S. H. Strogatz, Nonlinear dynamics and chaos. With applications to physics, biology, chemistry, and engineering, Addison-Wesley, Reading, MA, 1994, ix+498 pp.
- И. А. Тайманов, “О топологических свойствах интегрируемых геодезических потоков”, Матем. заметки, 44:2 (1988), 283–284
- И. А. Тайманов, “О примере перехода от хаоса к интегрируемости в магнитных геодезических потоках”, Матем. заметки, 76:4 (2004), 632–634
- W. P. Thurston, “Hyperbolic geometry and $3$-manifolds”, Low-dimensional topology (Bangor, 1979), London Math. Soc. Lecture Note Ser., 48, Cambridge Univ. Press, Cambridge–New York, 1982, 9–25
- W. P. Thurston, “Three dimensional manifolds, Kleinian groups and hyperbolic geometry”, Bull. Amer. Math. Soc. (N. S.), 6:3 (1982), 357–381
- В. И. Юдович, Асимптотика предельных циклов системы Лоренца при больших числах Рэлея, Деп. в ВИНИТИ 31.07.78 № 2611-78, РГУ, Ростов-на-Дону, 1978, 48 с.
Supplementary files
