Hermite–Pade polynomials and Shafer quadratic approximations for multivalued analytic functions
- Authors: Suetin S.P.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 75, No 4 (2020)
- Pages: 213-214
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133651
- DOI: https://doi.org/10.4213/rm9954
- ID: 133651
Cite item
Abstract
About the authors
Sergey Pavlovich Suetin
Steklov Mathematical Institute of Russian Academy of Sciences
Email: suetin@mi-ras.ru
Doctor of physico-mathematical sciences, no status
References
- А. В. Комлов, Н. Г. Кружилин, Р. В. Пальвелев, С. П. Суетин, УМН, 71:2(428) (2016), 205–206
- А. В. Комлов, Р. В. Пальвелев, С. П. Суетин, Е. М. Чирка, УМН, 72:4(436) (2017), 95–130
- Г. Лопес Лагомасино, В. Ван Аше, Матем. сб., 209:7 (2018), 106–138
- A. V. Sergeev, D. Z. Goodson, J. Phys. A, 31:18 (1998), 4301–4317
- R. E. Shafer, SIAM J. Numer. Anal., 11:2 (1974), 447–460
- H. Stahl, Nonlinear numerical methods and rational approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 23–53
- H. Stahl, J. Approx. Theory, 91:2 (1997), 139–204
- S. P. Suetin, Hermite–Pade polynomials and analytic continuation: new approach and some results, 2018, 63 pp.
- С. П. Суетин, Матем. заметки, 104:6 (2018), 918–929
- R. Živanovič, 24th Mediterranean conference on control and automation (Athens, 2016), IEEE, 2016, 866–870
Supplementary files
