The Dickman–Goncharov distribution
- Authors: Molchanov S.A.1,2, Panov V.A.2
-
Affiliations:
- University of North Carolina Charlotte
- Laboratory of Stochastic Analysis and its Applications, National Research University Higher School of Economics
- Issue: Vol 75, No 6 (2020)
- Pages: 107-152
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133635
- DOI: https://doi.org/10.4213/rm9976
- ID: 133635
Cite item
Abstract
In the 1930s and 40s, one and the same delay differential equation appeared in papers by two mathematicians, Karl Dickman and Vasily Leonidovich Goncharov, who dealt with completely different problems. Dickman investigated the limit value of the number of natural numbers free of large prime factors, while Goncharov examined the asymptotics of the maximum cycle length in decompositions of random permutations. The equation obtained in these papers defines, under a certain initial condition, the density of a probability distribution now called the Dickman–Goncharov distribution (this term was first proposed by Vershik in 1986). Recently, a number of completely new applications of the Dickman–Goncharov distribution have appeared in mathematics (random walks on solvable groups, random graph theory, and so on) and also in biology (models of growth and evolution of unicellular populations), finance (theory of extreme phenomena in finance and insurance), physics (the model of random energy levels), and other fields. Despite the extensive scope of applications of this distribution and of more general but related models, all the mathematical aspects of this topic (for example, infinite divisibility and absolute continuity) are little known even to specialists in limit theorems. The present survey is intended to fill this gap. Both known and new results are given.Bibliography: 62 titles.
About the authors
Stanislav Alekseevich Molchanov
University of North Carolina Charlotte; Laboratory of Stochastic Analysis and its Applications, National Research University Higher School of Economics
Email: smolchan@uncc.edu
Doctor of physico-mathematical sciences, Professor
Vladimir Alexandrovich Panov
Laboratory of Stochastic Analysis and its Applications, National Research University Higher School of Economics
Email: vpanov@hse.ru
PhD
References
- A. Alhakim, S. Molchanov, “The density flatness phenomenon”, Statist. Probab. Lett., 152 (2019), 156–161
- K. Alladi, “The Turan–Kubilius inequality for integers without large prime factors”, J. Reine Angew. Math., 1982:335 (1982), 180–196
- Z. D. Bai, Sungchul Lee, M. D. Penrose, “Rooted edges of a minimal directed spanning tree on random points”, Adv. in Appl. Probab., 38:1 (2006), 1–30
- G. Ben Arous, L. V. Bogachev, S. A. Molchanov, “Limit theorems for sums of random exponentials”, Probab. Theory Related Fields, 132:4 (2005), 579–612
- A. G. Bhatt, R. Roy, “On a random directed spanning tree”, Adv. in Appl. Probab., 36:1 (2004), 19–42
- P. Billingsley, “On the distribution of large prime divisors”, Period. Math. Hungar., 2:1-4 (1972), 283–289
- A. Bovier, I. Kurkova, M. Löwe, “Fluctuations of the free energy in the REM and the $p$-spin SK models”, Ann. Probab., 30:2 (2002), 605–651
- А. А. Бухштаб, “О числах арифметической прогрессии, у которых все простые множители малы по порядку роста”, Докл. АН СССР, 67 (1949), 5–8
- S. Chatterjee, Sanchayan Sen, “Minimal spanning trees and Stein's method”, Ann. Appl. Probab., 27:3 (2017), 1588–1645
- R. Cont, P. Tankov, Financial modelling with jump processes, Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC, Boca Raton, FL, 2004, xvi+535 pp.
- S. Covo, “On approximations of small jumps of subordinators with particular emphasis on a Dickman-type limit”, J. Appl. Probab., 46:3 (2009), 732–755
- N. G. de Bruijn, “On the number of positive integers $leq x $ and free of prime factors ${> y}$”, Nederl. Acad. Wetensch. Proc. Ser. A, 54, =Indag. Math., 13 (1951), 50–60
- N. G. de Bruijn, “On the number of positive integers $leq x$ and free of prime factors ${>y}$. II”, Nederl. Akad. Wetensch. Proc. Ser. A, 69, =Indag. Math., 28 (1966), 239–247
- L. De Haan, S. I. Resnick, H. Rootzen, C. de Vries, “Extremal behaviour of solutions to a stochastic difference equation with applications to ARCH processes”, Stochastic Process. Appl., 32:2 (1989), 213–224
- G. Derfel, Yaqin Feng, S. Molchanov, “Probabilistic approach to a cell growth model”, Differential equations, mathematical physics, and applications: Selim Grigorievich Krein centennial, Contemp. Math., 734, Amer. Math. Soc., Providence, RI, 2019, 95–106
- B. Derrida, “Random-energy model: limit of a family of disordered models”, Phys. Rev. Lett., 45:2 (1980), 79–82
- B. Derrida, “Random-energy model: an exactly solvable model of disordered systems”, Phys. Rev. B (3), 24:5 (1981), 2613–2626
- L. Devroye, Non-uniform random variate generation, Springer-Verlag, New York, 1986, xvi+843 pp.
- K. Dickman, “On the frequency of numbers containing prime factors of a certain relative magnitude”, Ark. för Mat. A, 22 (1930), 10, 14 pp.
- Dickman function, Encyclopedia of mathematics,par, ed. U. Rehmann
- J. Diebolt, D. Guegan, “Tail behaviour of the stationary density of general non-linear autoregressive processes of order 1”, J. Appl. Probab., 30:2 (1993), 315–329
- T. Eisele, “On a third-order phase transition”, Comm. Math. Phys., 90:1 (1983), 125–159
- P. Embrechts, C. Goldie, “Perpetuities and random equations”, Asymptotic statistics (Prague, 1993), Contrib. Statist., Physica, Heidelberg, 1994, 75–86
- P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events for insurance and finance, Appl. Math. (N. Y.), 33, Springer-Verlag, Berlin, 1997, xvi+645 pp.
- P. Erdös, “On a family of symmetric Bernoulli convolutions”, Amer. J. Math., 61:4 (1939), 974–976
- P. Erdös, “On the smoothness properties of a family Bernoulli convolutions”, Amer. J. Math., 62 (1940), 180–186
- В. Феллер, Введение в теорию вероятностей и ее приложения, т. 1, Мир, М., 1964, 498 с.
- Shui Feng, The Poisson–Dirichlet distribution and related topics. Models and asymptotic behaviors, Probab. Appl. (N. Y.), Springer, Heidelberg, 2010, xiv+218 pp.
- В. Л. Гончаров, “Из области комбинаторики”, Изв. АН СССР. Сер. матем., 8:1 (1944), 3–48
- M. Grabchak, S. A. Molchanov, “Limit theorems for random exponentials: the bounded support case”, Теория вероятн. и ее примен., 63:4 (2018), 779–794
- A. Hildebrand, “Integers free of large prime factors and the Riemann hypothesis”, Mathematika, 31:2 (1984), 258–271
- A. Hildebrand, “On the number of positive integers $leq x$ and free of prime factors ${> y}$”, J. Number Theory, 22:3 (1986), 289–307
- A. Hildebrand, G. Tenenbaum, “On integers free of large prime factors”, Trans. Amer. Math. Soc., 296:1 (1986), 265–290
- A. Hildebrand, G. Tenenbaum, “Integers without large prime factors”, J. Theor. Nombres Bordeaux, 5:2 (1993), 411–484
- М. Кац, Вероятность и смежные вопросы в физике, 2-е изд., УРСС, М., 2003, 273 с.
- D. E. Knuth, L. Trabb Pardo, “Analysis of a simple factorization algorithm”, Theoret. Comput. Sci., 3:3 (1976/77), 321–348
- В. Д. Конаков, С. Меноззи, C. А. Молчанов, “Диффузионные процессы и их аппроксимации на разрешимых группах верхнетреугольных $(2times 2)$-матриц”, Докл. РАН, 439:5 (2011), 585–588
- V. Konakov, S. Menozzi, S. Molchanov, “The Brownian motion on $operatorname{Aff}(mathbb R)$ and quasi-local theorems”, Probabilistic methods in geometry, topology and spectral theory, Contemp. Math., 739, Amer. Math. Soc., Providence, RI, 2019, 97–125
- Г. Маккин, Стохастические интегралы, Мир, М., 1972, 184 с.
- S. Molchanov, V. Panov, “Limit theorems for the alloy-type random energy model”, Stochastics, 91:5 (2019), 754–772
- P. Moree, “Nicolaas Govert de Bruijn, the enchanter of friable integers”, Indag. Math. (N. S.), 24:4 (2013), 774–801
- K. K. Norton, Numbers with small prime factors, and the least $k$th power non-residue, Mem. Amer. Math. Soc., 106, Amer. Math. Soc., Providence, RI, 1971, ii+106 pp.
- E. Olivieri, P. Picco, “On the existence of thermodynamics for the random energy model”, Comm. Math. Phys., 96:1 (1984), 125–144
- M. D. Penrose, A. R. Wade, “Random minimal directed spanning trees and Dickman-type distributions”, Adv. in Appl. Probab., 36:3 (2004), 691–714
- M. D. Penrose, A. R. Wade, “On the total length of the random minimal directed spanning tree”, Adv. in Appl. Probab., 38:2 (2006), 336–372
- M. D. Penrose, A. R. Wade, “Limit theorems for random spatial drainage networks”, Adv. in Appl. Probab., 42:3 (2010), 659–688
- Y. Peres, W. Schlag, B. Solomyak, “Sixty years of Bernoulli convolutions”, Fractal geometry and stochastics II (Greifswald/Koserow, 1998), Progr. Probab., 46, Birkhäuser, Basel, 2000, 39–65
- Y. Peres, B. Solomyak, “Absolute continuity of Bernoulli convolutions, a simple proof”, Math. Res. Lett., 3:2 (1996), 231–239
- Ю. В. Прохоров, Ю. А. Розанов, Теория вероятностей. Основные понятия. Предельные теоремы. Случайные процессы, 3-е перераб. изд., Наука, М., 1987, 398 с.
- S. Ramanujan, The lost notebook and other unpublished papers, with an introduction by G. E. Andrews, Springer-Verlag, Berlin; Narosa Publ. House, New Delhi, 1988, xxv+419 pp.
- V. Ramaswami, “On the number of positive integers less than $x$ and free of prime divisors greater than $x^{c}$”, Bull. Amer. Math. Soc., 55:12 (1949), 1122–1127
- R. A. Rankin, “The difference between consecutive prime numbers”, J. London Math. Soc., s1-13:4 (1938), 242–247
- I. Rodriguez-Iturbe, A. Rinaldo, Fractal river basins. Chance and self-organization, Cambridge Univ. Press, Cambridge, 2001, 570 pp.
- L. C. G. Rogers, D. Williams, Diffusions, Markov processes and martingales, v. 2, Cambridge Math. Lib., Itô calculus, Reprint of the 2nd ed., Cambridge Univ. Press, Cambridge, 2000, xiv+480 pp.
- W. Schoutens, Levy processes in finance. Pricing financial derivatives, John Wiley and Sons, Chichester, 2003, 200 pp.
- P. Seba, “Markov chain of distances between parked cars”, J. Phys. A, 41:12 (2008), 122003, 5 pp.
- B. Solomyak, “On the random series $sum pmlambda^n$ (an Erdös problem)”, Ann. of Math. (2), 142:3 (1995), 611–625
- G. Tenenbaum, Introduction to analytic and probabilistic number theory, Transl. from the French, Grad. Stud. Math., 163, 3rd ed., Amer. Math. Soc., Providence, RI, 2015, xxiv+629 pp.
- А. М. Вершик, “Асимптотическое распределение разложений натуральных чисел на простые делители”, Докл. АН СССР, 289:2 (1986), 269–272
- А. М. Вершик, “Существует ли мера Лебега в бесконечномерном пространстве?”, Анализ и особенности. Часть 2, Сборник статей. К 70-летию со дня рождения академика Владимира Игоревича Арнольда, Тр. МИАН, 259, Наука, МАИК “Наука/Интерпериодика”, М., 2007, 256–281
- А. М. Вершик, А. А. Шмидт, “Предельные меры, возникающие в асимптотической теории симметрических групп. I”, Теория вероятн. и ее примен., 22:1 (1977), 72–88
- А. М. Вершик, А. А. Шмидт, “Предельные меры, возникающие в асимптотической теории симметрических групп. II”, Теория вероятн. и ее примен., 23:1 (1978), 42–54
Supplementary files
