Geometry of Banach limits and their applications
- Authors: Semenov E.M.1, Sukochev F.A.2, Usachev A.S.1,3
-
Affiliations:
- Voronezh State University
- University of New South Wales, School of Mathematics and Statistics
- Central South University, Changsha
- Issue: Vol 75, No 4 (2020)
- Pages: 153-194
- Section: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133624
- DOI: https://doi.org/10.4213/rm9901
- ID: 133624
Cite item
Abstract
About the authors
Evgenii Mikhailovich Semenov
Voronezh State University
Email: nadezhka_ssm@geophys.vsu.ru
Doctor of physico-mathematical sciences, Professor
Fedor Anatol'evich Sukochev
University of New South Wales, School of Mathematics and Statistics
Email: f.sukochev@unsw.edu.au
Candidate of physico-mathematical sciences, Professor
Aleksandr Sergeevich Usachev
Voronezh State University; Central South University, Changsha
Email: alex.usachev.ru@gmail.com
Candidate of physico-mathematical sciences
References
- Z. U. Ahmad, Mursaleen, “An application of Banach limits”, Proc. Amer. Math. Soc., 103:1 (1988), 244–246
- A. Aizpuru, R. Armario, F. J. Garcia-Pacheco, F. J. Perez-Fernandez, “Banach limits and uniform almost summability”, J. Math. Anal. Appl., 379:1 (2011), 82–90
- S. Albeverio, D. Guido, A. Ponosov, S. Scarlatti, “Singular traces and compact operators”, J. Funct. Anal., 137:2 (1996), 281–302
- E. A. Алехно, “Некоторые специальные свойства функционалов Мазура. II”, Аналитические методы анализа и дифференциальных уравнений (АМАДЕ-2006), Тр. 4-й Междунар. конф. (Минск, 2006), т. 2, БГУ, ИМ НАН Беларуси, Минск, 2006, 17–23
- E. A. Alekhno, “Superposition operator on the space of sequences almost converging to zero”, Cent. Eur. J. Math., 10:2 (2012), 619–645
- E. A. Alekhno, “On Banach–Mazur limits”, Indag. Math. (N. S.), 26:4 (2015), 581–614
- Е. А. Алехно, Е. М. Семенов, Ф. А. Сукочев, А. С. Усачев, “Порядковые и геометрические свойства множества банаховых пределов”, Алгебра и анализ, 28:3 (2016), 3–35
- E. Alekhno, E. Semenov, F. Sukochev, A. Usachev, “On the structure of invariant Banach limits”, C. R. Math. Acad. Sci. Paris, 354:12 (2016), 1195–1199
- Е. А. Алехно, Е. М. Семенов, Ф. А. Сукочев, А. С. Усачев, “Банаховы пределы: инвариантность и функциональные характеристики”, Докл. РАН, 475:1 (2017), 7–9
- E. Alekhno, E. Semenov, F. Sukochev, A. Usachev, “Invariant Banach limits and their extreme points”, Studia Math., 242:1 (2018), 79–107
- C. D. Aliprantis, O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006, xx+376 pp.
- J. Appell, E. De Pascale, P. P. Zabrejko, “Some remarks on Banach limits”, Atti Sem. Mat. Fis. Univ. Modena, 42:1 (1994), 273–278
- Р. Армарио, Ф. Х. Гарсия-Пачеко, Ф. Х. Перес-Фернандес, “О векторнозначных банаховых пределах”, Функц. анализ и его прил., 47:4 (2013), 82–86
- С. В. Асташкин, Е. М. Семенов, “Константы Лебега системы Уолша и банаховы пределы”, Сиб. матем. журн., 57:3 (2016), 512–526
- Н. Н. Авдеев, “О пространстве почти сходящихся последовательностей”, Матем. заметки, 105:3 (2019), 462–466
- Н. Н. Авдеев, Е. М. Семeнов, А. С. Усачев, “Банаховы пределы и мера на множестве последовательностей из 0 и 1”, Матем. заметки, 106:5 (2019), 784–787
- С. Банах, Теория линейных операций, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2001, 272 с.
- Н. К. Бари, Тригонометрические ряды, Физматгиз, М., 1961, 936 с.
- G. Bennett, N. J. Kalton, “Consistency theorems for almost convergence”, Trans. Amer. Math. Soc., 198 (1974), 23–43
- М. М. Боголюбов, “Про деякi ергодичнi властивостi суцiльних групп претворень”, Наук. зап. Киïв. держ. ун-ту iм. Т. Г. Шевченко. Фiз.-матем. зб., 4:3 (1939), 45–53
- E. Borel, “Les probabilites denombrables et leurs applications arithmetiques”, Rend. Circ. Mat. Palermo, 27 (1909), 247–271
- R. E. Bruck, S. Reich, “Accretive operators, Banach limits and dual ergodic theorems”, Bull. Acad. Polon. Sci. Ser. Sci. Math., 29:11-12 (1981), 585–589
- J. W. Calkin, “Abstract symmetric boundary conditions”, Trans. Amer. Math. Soc., 45:3 (1939), 369–442
- A. L. Carey, J. Phillips, A. Rennie, F. Sukochev, “The Hochschild class of the Chern character for semifinite spectral triples”, J. Funct. Anal., 213:1 (2004), 111–153
- A. Carey, J. Phillips, F. A. Sukochev, “Spectral flow and Dixmier traces”, Adv. Math., 173:1 (2003), 68–133
- A. L. Carey, A. Rennie, A. Sedaev, F. Sukochev, “The {D}ixmier trace and asymptotics of zeta functions”, J. Funct. Anal., 249:2 (2007), 253–283
- А. Л. Кери, Ф. А. Сукочев, “Следы Диксмье и некоторые приложения в некоммутативной геометрии”, УМН, 61:6(372) (2006), 45–110
- A. Carey, F. Sukochev, “Measurable operators and the asymptotics of heat kernels and zeta functions”, J. Funct. Anal., 262:10 (2012), 4582–4599
- C. Chou, “On the size of the set of left invariant means on a semigroup”, Proc. Amer. Math. Soc., 23 (1969), 199–205
- C. Chou, “Minimal sets and ergodic measures for $beta N setminus N$”, Illinois J. Math., 13:4 (1969), 777–788
- A. Connes, “The action functional in non-commutative geometry”, Comm. Math. Phys., 117:4 (1988), 673–683
- A. Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994, xiv+661 pp.
- A. Connes, E. McDonald, F. Sukochev, D. Zanin, “Conformal trace theorem for {J}ulia sets of quadratic polynomials”, Ergodic Theory Dynam. Systems, 39:9 (2019), 2481–2506
- А. Конн, Ф. А. Сукочев, Д. В. Занин, “Теорема о следах для квазифуксовых групп”, Матем. сб., 208:10 (2017), 59–90
- J. Connor, “Almost none of the sequences of 0's and 1's are almost convergent”, Internat. J. Math. Math. Sci., 13:4 (1990), 775–777
- R. G. Cooke, “Generalizations of Banach–Hausdorff limits”, Proc. Amer. Math. Soc., 4:3 (1953), 410–417
- Y. Cui, H. Hudzik, R. Pluciennik, “Extreme points and strongly extreme points in Orlicz spaces equipped with the Orlicz norm”, Z. Anal. Anwendungen, 22:4 (2003), 789–817
- G. Das, “Banach and other limits”, J. London Math. Soc. (2), 7:3 (1974), 501–507
- G. Das, B. Kuttner, S. Nanda, “Some sequence spaces and absolute almost convergence”, Trans. Amer. Math. Soc., 283:2 (1984), 729–739
- M. M. Day, “Amenable semigroups”, Illinois J. Math., 1:4 (1957), 509–544
- M. M. Дэй, Нормированные линейные пространства, ИЛ, М., 1961, 232 с.
- M. M. Day, “Semigroups and amenability”, Semigroups (Wayne State Univ., Detroit, MI, 1968), Academic Press, New York, 1969, 5–53
- J. B. Deeds, “Summability of vector sequences”, Studia Math., 30 (1968), 361–372
- J. Dixmier, “Existence de traces non normales”, C. R. Acad. Sci. Paris Ser. A-B, 262 (1966), A1107–A1108
- П. Г. Доддс, Б. де Пагтер, А. А. Седаев, Е. М. Семeнов, Ф. А. Сукочев, “Сингулярные симметричные функционалы”, Исследования по линейным операторам и теории функций. 30, Зап. науч. сем. ПОМИ, 290, ПОМИ, СПб., 2002, 42–71
- П. Г. Доддс, Б. де Пагтер, А. А. Седаев, Е. М. Семeнов, Ф. А. Сукочев, “Сингулярные симметричные функционалы и банаховы пределы с дополнительными свойствами инвариантности”, Изв. РАН. Сер. матем., 67:6 (2003), 111–136
- P. G. Dodds, B. de Pagter, E. M. Semenov, F. A. Sukochev, “Symmetric functionals and singular traces”, Positivity, 2:1 (1998), 47–75
- R. G. Douglas, “On the measure-theoretic character of an invariant mean”, Proc. Amer. Math. Soc., 16 (1965), 30–36
- Н. Данфорд, Дж. Т. Шварц, Линейные операторы, т. I, Общая теория, ИЛ, М., 1962, 895 с.
- W. F. Eberlein, “Banach–Hausdorff limits”, Proc. Amer. Math. Soc., 1 (1950), 662–665
- Р. Эдвардс, Функциональный анализ. Теория и приложения, Мир, М., 1969, 1071 с.
- L. Fairchild, “Extreme invariant means without minimal support”, Trans. Amer. Math. Soc., 172 (1972), 83–93
- G. Fichtenholz, L. Kantorovitch, “Sur les operations lineaires dans l'espace des fonctions bornees”, Studia Math., 5 (1934), 69–98
- J. Flores, F. L. Hernandez, E. M. Semenov, P. Tradacete, “Strictly singular and power-compact operators on Banach lattices”, Israel J. Math., 188 (2012), 323–352
- C. Foias, R. M. S. Rosa, R. M. Temam, “Convergence of time averages of weak solutions of the three-dimensional Navier–Stokes equations”, J. Stat. Phys., 160:3 (2015), 519–531
- D. H. Fremlin, Topological Riesz spaces and measure theory, Cambridge Univ. Press, London, 1974, xiv+266 pp.
- D. H. Fremlin, Well-distributed sequences and Banach density, Vers. of 28.3.11, 40 pp.
- D. H. Fremlin, M. Talagrand, “A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means”, Math. Z., 168:2 (1979), 117–142
- Ф. Гринлиф, Инвариантные средние на топологических группах и их приложения, Мир, М., 1973, 136 с.
- A. Guichardet, “La trace de Dixmier et autres traces”, Enseign. Math., 61:3-4 (2015), 461–481
- Э. Хьюитт, К. Росс, Абстрактный гармонический анализ, т. I, Наука, М., 1975, 654 с.
- M. Jerison, “The set of generalized limits of bounded sequences”, Canadian J. Math., 9 (1957), 79–89
- В. М. Кадец, Курс функционального анализа, Харьк. нац. ун-т им. В. Н. Каразина, Харьков, 2006, 608 с.
- N. Kalton, S. Lord, D. Potapov, F. Sukochev, “Traces of compact operators and the noncommutative residue”, Adv. Math., 235 (2013), 1–55
- T. Kania, “Vector-valued invariant means revisited once again”, J. Math. Anal. Appl., 445:1 (2017), 797–802
- Л. В. Канторович, Г. П. Акилов, Функциональный анализ, 2-е изд., Наука, М., 1977, 742 с.
- Б. С. Кашин, А. А. Саакян, Ортогональные ряды, 2-е изд., АФЦ, М., 1999, x+550 с.
- G. Keller, L. C. Moore, Jr., “Invariant means on the group of integers”, Analysis and geometry, Bibliographisches Inst., Mannheim, 1992, 1–18
- R. Kunisada, “Invariant linear functionals on $L^infty(R_+)$”, J. Math. Anal. Appl., 481:1 (2020), 123452, 22 pp.
- J. C. Kurtz, “Almost convergent vector sequences”, Tohoku Math. J. (2), 22:4 (1970), 493–498
- J. C. Kurtz, “Almost convergence in Banach spaces”, Tohoku Math. J. (2), 24:3 (1972), 389–399
- С. С. Кутателадзе, Основы функционального анализа, 4-е изд., Изд-во Ин-та матем. СО РАН, Новосибирск, 2001
- S. Li, C. Li, Y.-C. Li, “On $sigma$-limit and $ssigma$-limit in Banach spaces”, Taiwanese J. Math., 9:3 (2005), 359–371
- X. Li, W. Shen, C. Sun, “Invariant measures for complex-valued dissipative dynamical systems and applications”, Discrete Contin. Dyn. Syst. Ser. B, 22:6 (2017), 2427–2446
- Y.-C. Li, “Almost convergence of sequences in Banach spaces in weak, strong and absolute senses”, Taiwanese J. Math., 10:1 (2006), 209–218
- J. Lindenstrauss, L. Tzafriri, Classical Banach spaces, Ergeb. Math. Grenzgeb., II, Function spaces, Springer-Verlag, Berlin–New York, 1979, x+243 pp.
- S. Lord, F. Sukochev, D. Zanin, Singular traces. Theory and applications, De Gruyter Stud. Math., 46, De Gruyter, Berlin, 2013, xvi+452 pp.
- S. Lord, F. A. Sukochev, D. Zanin, “Advances in Dixmier traces and applications”, Advances in noncommutative geometry, Springer, Cham, 2020, 491–584
- G. G. Lorentz, “A contribution to the theory of divergent sequences”, Acta Math., 80 (1948), 167–190
- W. A. J. Luxemburg, “Nonstandard hulls, generalized limits and almost convergence”, Analysis and geometry. Trends in research and teaching, eds. B. Fuchssteiner, W. A. J. Luxemburg, B. I. Wissenschaftsverlag, Mannheim, 1992, 19–45
- W. A. J. Luxemburg, B. de Pagter, “Invariant means for positive operators and semigroups”, Circumspice. Various papers in and around mathematics in honor of Arnoud van Rooij, Catholic Univ. of Nijmegen, Nijmegen, 2001, 31–55
- K. Matomäki, M. Radziwill, T. Tao, “Sign patterns of the Liouville and Möbius functions”, Forum Math. Sigma, 4 (2016), 14, 44 pp.
- S. Mazur, “O metodach sumowalnosci”, Ann. Soc. Polon. Math. (Suppl.), 1929, 102–107
- S. Mazur, “On the generalized limit of bounded sequences”, Colloq. Math., 2 (1951), 173–175
- J. Mercer, “Sturm–Liouville series of normal functions in the theory of integral equations”, Philos. Trans. R. Soc. Lond. Ser. A, 211 (1912), 111–198
- В. Д. Мильман, “Операторы класса $c_0$ и $c_0^*$”, Теория функций, функциональный анализ и их приложения, 10, Изд-во Харьк. ун-та, Х., 1970, 15–26
- F. Moricz, B. E. Rhoades, “Almost convergence of double sequences and strong regularity of summability matrices”, Math. Proc. Cambridge Philos. Soc., 104:2 (1988), 283–294
- Mursaleen, “On some new invariant matrix methods of summability”, Quart. J. Math. Oxford Ser. (2), 34 (1983), 77–86
- Mursaleen, A. K. Gaur, T. A. Chishti, “On some new sequence spaces of invariant means”, Acta Math. Hungar., 75:3 (1997), 209–214
- M. Nakamura, S. Kakutani, “Banach limits and the Čech compactification of a countable discrete set”, Proc. Imp. Acad. Tokyo, 19:5 (1943), 224–229
- S. Nanda, “Strongly almost summable and strongly almost convergent sequences”, Acta Math. Hungar., 49:1-2 (1987), 71–76
- J. v. Neumann, “Zur allgemeinen Theorie des Masses”, Fund. Math., 13 (1929), 73–116
- R. Nillsen, “Nets of extreme Banach limits”, Proc. Amer. Math. Soc., 55:2 (1976), 347–352
- Y. Peres, “Application of Banach limits to the study of sets of integers”, Israel J. Math., 62:1 (1988), 17–31
- A. Pietsch, “Einige neue Klassen von kompakten linearen Abbildungen”, Rev. Math. Pures Appl., 8 (1963), 427–447
- A. Pietsch, “Traces and shift invariant functionals”, Math. Nachr., 145 (1990), 7–43
- A. Pietsch, “Connes–Dixmier versus Dixmier traces”, Integral Equations Operator Theory, 77:2 (2013), 243–259
- A. Pietsch, “Traces of operators and their history”, Acta Comment. Univ. Tartu. Math., 18:1 (2014), 51–64
- A. Pietsch, “Traces on operator ideals and related linear forms on sequence ideals (part I)”, Indag. Math. (N. S.), 25:2 (2014), 341–365
- A. Pietsch, “Traces on operator ideals and related linear forms on sequence ideals (part II)”, Integral Equations Operator Theory, 79:2 (2014), 255–299
- A. Pietsch, “Traces on operator ideals and related linear forms on sequence ideals (part III)”, J. Math. Anal. Appl., 421:2 (2015), 971–981
- A. Pietsch, “A new approach to operator ideals on {H}ilbert space and their traces”, Integral Equations Operator Theory, 89:4 (2017), 595–606
- A. Pietsch, “The spectrum of shift operators and the existence of traces”, Integral Equations Operator Theory, 90:2 (2018), 17, 13 pp.
- W. Prager, J. Schwaiger, “Vector valued Banach limits and generalizations applied to the inhomogeneous Cauchy equation”, Aequationes Math., 93:1 (2019), 257–275
- R. A. Raimi, “Invariant means and invariant matrix methods of summability”, Duke Math. J., 30 (1963), 81–94
- R. A. Raimi, “Factorization of summability-preserving generalized limits”, J. London Math. Soc. (2), 22:3 (1980), 398–402
- L. Rotem, “Banach limit in convexity and geometric means for convex bodies”, Electron. Res. Announc. Math. Sci., 23 (2016), 41–51
- M. K. Roychowdhury, “Quantization dimension for Gibbs-like measures on cookie-cutter sets”, Kyoto J. Math., 54:2 (2014), 239–257
- А. А. Седаев, “Об аппроксимации пределов Банаха элементами пространства $ell_1$”, Вестн. Воронеж. гос. ун-та. Сер. Физ. Матем., 2006, № 1, 187–192
- A. A. Sedaev, F. A. Sukochev, “Dixmier measurability in Marcinkiewicz spaces and applications”, J. Funct. Anal., 265:12 (2013), 3053–3066
- Е. М. Семeнов, А. М. Штейнберг, “Оценки норм операторных блоков в банаховых решетках”, Матем. сб., 126(168):3 (1985), 327–343
- E. M. Semenov, F. A. Sukochev, “Invariant Banach limits and applications”, J. Funct. Anal., 256:6 (2010), 1517–1541
- Е. М. Семенов, Ф. А. Сукочев, “Характеристические функции банаховых пределов”, Сиб. матем. журн., 51:4 (2010), 904–910
- E. M. Semenov, F. A. Sukochev, “Extreme points of the set of Banach limits”, Positivity, 17:1 (2013), 163–170
- Е. М. Семeнов, Ф. А. Сукочев, А. С. Усачев, “Структурные свойства множества банаховых пределов”, Докл. РАН, 441:2 (2011), 177–178
- Е. М. Семeнов, Ф. А. Сукочев, А. С. Усачев, “Геометрические свойства множества банаховых пределов”, Изв. РАН. Сер. матем., 78:3 (2014), 177–204
- Е. М. Семeнов, Ф. А. Сукочев, А. С. Усачев, “Основные классы инвариантных банаховых пределов”, Изв. РАН. Сер. матем., 83:1 (2019), 140–167
- E. Semenov, F. Sukochev, A. Usachev, D. Zanin, “Banach limits and traces on $mathscr L_{1,infty}$”, Adv. Math., 285 (2015), 568–628
- E. Semenov, F. Sukochev, A. Usachev, D. Zanin, “Dilation invariant Banach limits”, Indag. Math. (to appear)
- E. Semenov, F. Sukochev, A. Usachev, D. Zanin, “Invariant Banach limits and applications to noncommutative geometry”, Pacific Math. J., 306:1 (2020), 357–373
- Е. М. Семенов, А. С. Усачев, “Коэффициенты Фурье–Хаара и банаховы пределы”, Докл. РАН, 425:2 (2009), 172–173
- Е. М. Семенов, А. С. Усачев, О. О. Хорпяков, “Пространство почти-сходящихся последовательностей”, Докл. РАН, 409:6 (2006), 754–755
- R. Sikorski, “On the existence of the generalized limit”, Studia Math., 12 (1951), 117–124
- M. A. Sofi, Banach limits – some new thoughts and perspectives, 2019, 16 pp.
- L. Sucheston, “On existence of finite invariant measures”, Math. Z., 86 (1964), 327–336
- L. Sucheston, “Banach limits”, Amer. Math. Monthly, 74:3 (1967), 308–311
- F. Sukochev, A. Usachev, D. Zanin, “Generalized limits with additional invariance properties and their applications to noncommutative geometry”, Adv. Math., 239 (2013), 164–189
- F. Sukochev, A. Usachev, D. Zanin, “On the distinction between the classes of Dixmier and Connes–Dixmier traces”, Proc. Amer. Math. Soc., 141:6 (2013), 2169–2179
- F. Sukochev, A. Usachev, D. Zanin, “Dixmier traces generated by exponentiation invariant generalised limits”, J. Noncommut. Geom., 8:2 (2014), 321–336
- F. Sukochev, A. Usachev, D. Zanin, “Singular traces and residues of the $zeta$-function”, Indiana Univ. Math. J., 66:4 (2017), 1107–1144
- F. Sukochev, D. Zanin, “$zeta$-function and heat kernel formulae”, J. Funct. Anal., 260:8 (2011), 2451–2482
- F. Sukochev, D. Zanin, “Which traces are spectral?”, Adv. Math., 252 (2014), 406–428
- M. Talagrand, “Geometrie des simplexes de moyennes invariantes”, J. Funct. Anal., 34:2 (1979), 304–337
- R. Tanaka, “On vector-valued Banach limits with values in $mathcal B(mathcal H)$”, Publ. Math. Debrecen, 92:3-4 (2018), 471–480
- A. С. Усачев, “Преобразования в пространстве почти сходящихся последовательностей”, Сиб. матем. журн., 49:6 (2008), 1427–1429
- A. Usachev, “On Fourier–Haar coefficients of the function from the Marcinkiewicz space”, J. Math. Anal. Appl., 414:1 (2014), 110–124
- S. Wagon, The Banach–Tarski paradox, Corr. reprint of the 1985 original, Cambridge Univ. Press, Cambridge, 1994, xviii+253 pp.
Supplementary files
