Семантические пределы плотных комбинаторных объектов
- Авторы: Корельяно Л.Н.1, Разборов А.А.1,2,3
-
Учреждения:
- University of Chicago
- Математический институт им. В.А. Стеклова Российской академии наук
- Toyota Technological Institute at Chicago
- Выпуск: Том 75, № 4 (2020)
- Страницы: 45-152
- Раздел: Статьи
- URL: https://journals.rcsi.science/0042-1316/article/view/133622
- DOI: https://doi.org/10.4213/rm9956
- ID: 133622
Цитировать
Аннотация
Теория пределов дискретных комбинаторных объектов успешно развивается в течение последнего десятилетия. Синтаксический, алгебраический подход к предмету широко известен как “алгебры флагов”, тогда как семантический, геометрический подход часто именуется “пределами графов”. Язык теории пределов графов в целом более наглядный и выразительный, но той ценой, что он лучше подходит для простых графов, чем для более общих комбинаторных объектов. Сообразно этому, из литературы известны несколько попыток (разной степени общности) определить предельные объекты для более сложных комбинаторных структур.Настоящая статья – еще одна попытка получить рабочую общую теорию плотных предельных объектов. В отличие от предыдущих усилий в этом направлении (за важным исключением работы А. Ароскара и Дж. Каммингса 2014 г.), наши построения основанына тех же понятиях логики первого порядка и теории моделей, что используются в теории алгебр флагов.Показано, что наши определения естественным образом охватывают многие ранее рассматривавшиеся случаи (такие как графоны, гиперграфоны,направленные графоны, пермутоны, посетоны, раскрашенные графы и пр.),а фундаментальные свойства существования и единственности распространяютсяна этот более общий случай. Также приведено наглядное общее доказательствонепрерывного варианта индуцированной леммы об удалении,основанное на теореме компактности для логики высказываний.Особо выделяется понятие открытой интерпретации, часто позволяющее переноситьметоды и результаты с одной ситуации на другую. И в этом случае показано,что некоторые ранее известные рассуждения можно довольно естественно выразитьна таком языке.Библиография: 68 названий.
Ключевые слова
Об авторах
Леонардо Нагами Корельяно
University of Chicago
Email: lenacore@uchicago.edu
Александр Александрович Разборов
University of Chicago; Математический институт им. В.А. Стеклова Российской академии наук; Toyota Technological Institute at Chicago
Email: razborov@mi-ras.ru
доктор физико-математических наук, без звания
Список литературы
- N. Ackerman, C. Freer, R. Patel, “Invariant measures concentrated on countable structures”, Forum Math. Sigma, 4 (2016), e17, 59 pp.
- D. J. Aldous, “Representations for partially exchangeable arrays of random variables”, J. Multivariate Anal., 11:4 (1981), 581–598
- D. J. Aldous, “Exchangeability and related topics”, Ecole d'ete de probabilites de Saint-Flour XIII – 1983, Lecture Notes in Math., 1117, Springer, Berlin, 1985, 1–198
- N. Alon, J. H. Spencer, The probabilistic method, Wiley-Intersci. Ser. Discrete Math. Optim., 3rd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2008, xviii+352 pp.
- A. Aroskar, J. Cummings, “Limits, regularity and removal for finite structures”, 2014, 26 pp.
- T. Austin, “On exchangeable random variables and the statistics of large graphs and hypergraphs”, Probab. Surv., 5 (2008), 80–145
- T. Austin, T. Tao, “Testability and repair of hereditary hypergraph properties”, Random Structures Algorithms, 36:4 (2010), 373–463
- R. Baber, Some results in extremal combinatorics, Thesis (Ph.D.), Univ. of London, Univ. College London (UK), 2011, 149 pp.
- J. Balogh, P. Hu, B. Lidicky, H. Liu, “Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube”, European J. Combin., 35 (2014), 75–85
- J. Balogh, P. Hu, B. Lidicky, F. Pfender, J. Volec, M. Young, “Rainbow triangles in three-colored graphs”, J. Combin. Theory Ser. B, 126 (2017), 83–113
- Дж. Барвайс (ред.), Справочная книга по математической логике, Ч. I–IV, Наука, М., 1982, 1983, 392 с., 375 с., 360 с., 391 с.
- В. И. Богачев, Основы теории меры, т. 1, 2, 2-е изд., НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2006, 583 с., 679 с.
- B. Bollobas, O. Riordan, “Metrics for sparse graphs”, Surveys in combinatorics 2009, London Math. Soc. Lecture Note Ser., 365, Cambridge Univ. Press, Cambridge, 2009, 211–287
- B. Bollobas, O. Riordan, “Sparse graphs: metrics and random models”, Random Structures Algorithms, 39:1 (2011), 1–38
- C. Borgs, J. T. Chayes, H. Cohn, Y. Zhao, “An {$L^p$} theory of sparse graph convergence. I. Limits, sparse random graph models, and power law distributions”, Trans. Amer. Math. Soc., 372:5 (2019), 3019–3062
- C. Borgs, J. T. Chayes, H. Cohn, Y. Zhao, “An $L^p$ theory of sparse graph convergence. II. LD convergence, quotients and right convergence”, Ann. Probab., 46:1 (2018), 337–396
- C. Borgs, J. T. Chayes, L. Lovasz, V. Sos, K. Vesztergombi, “Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing”, Adv. Math., 219:6 (2008), 1801–1851
- P. Brass, G. Karolyi, P. Valtr, “A Turan-type extremal theory of convex geometric graphs”, Discrete and computational geometry, Algorithms Combin., 25, Springer, Berlin, 2003, 275–300
- L. Caccetta, R. Häggkvist, “On minimal digraphs with given girth”, Proceedings of the 9th southeastern conference on combinatorics, graph theory, and computing (Florida Atlantic Univ., Boca Raton, FL, 1978), Congress. Numer., 21, Utilitas Math., Winnipeg, MB, 1978, 181–187
- P. J. Cameron, “The random graph”, The mathematics of Paul Erdős, v. II, Algorithms Combin., 14, Springer, Berlin, 1997, 333–351
- Г. Кейслер, Ч. Ч. Чэн, Теория моделей, Мир, М., 1977, 616 с.
- S. Chatterjee, A. Dembo, “Nonlinear large deviations”, Adv. Math., 299 (2016), 396–450
- F. R. K. Chung, R. L. Graham, “Quasi-random tournaments”, J. Graph Theory, 15:2 (1991), 173–198
- F. R. K. Chung, R. L. Graham, R. M. Wilson, “Quasi-random graphs”, Combinatorica, 9 (1989), 345–362
- P. Diaconis, D. Freedman, “On the statistics of vision: the Julesz conjecture”, J. Math. Psych., 24:2 (1981), 112–138
- P. Diaconis, D. Freedman, “Partial exchangeability and sufficiency”, Statistics: applications and new directions (Calcutta, 1981), Indian Statist. Inst., Calcutta, 1984, 205–236
- P. Diaconis, S. Holmes, S. Janson, “Threshold graph limits and random threshold graphs”, Internet Math., 5:3 (2008), 267–320
- P. Diaconis, S. Holmes, S. Janson, “Interval graph limits”, Ann. Comb., 17:1 (2013), 27–52
- P. Diaconis, S. Janson, “Graph limits and exchangeable random graphs”, Rend. Mat. Appl. (7), 28:1 (2008), 33–61
- G. Elek, B. Szegedy, “A measure-theoretic approach to the theory of dense hypergraphs”, Adv. Math., 231:3-4 (2012), 1731–1772
- Д. Г. Фон-Дер-Флаас, “Об одном способе построения $(3,4)$-графов”, Матем. заметки, 44:4 (1988), 546–550
- W. T. Gowers, “Quasirandomness, counting and regularity for 3-uniform hypergraphs”, Combin. Probab. Comput., 15:1-2 (2006), 143–184
- H. Hatami, P. Hatami, J. Hirst, “Limits of boolean functions on $mathbb F_p^n$”, Electron. J. Combin., 21:4 (2014), P4.2, 15 pp.
- H. Hatami, S. Norine, “Undecidability of linear inequalities in graph homomorphism densities”, J. Amer. Math. Soc., 24:2 (2011), 547–565
- J. Hladky, A. Mathe, V. Patel, O. Pikhurko, “Poset limits can be totally ordered”, Trans. Amer. Math. Soc., 367:6 (2015), 4319–4337
- D. N. Hoover, Relations on probability spaces and arrays of random variables, Preprint, Institute for Advanced Study, Princeton, NJ, 1979, 63 pp.
- C. Hoppen, Y. Kohayakawa, C. G. Moreira, B. Rath, R. Menezes Sampaio, “Limits of permutation sequences”, J. Combin. Theory Ser. B, 103:1 (2013), 93–113
- S. Janson, “Poset limits and exchangeable random posets”, Combinatorica, 31:5 (2011), 529–563
- S. Janson, “Quasi-random graphs and graph limits”, European J. Combin., 32:7 (2011), 1054–1083
- G. Japaridze, D. de Jongh, “The logic of provability”, Handbook of proof theory, Stud. Logic Found. Math., 137, North-Holland, Amsterdam, 1998, 475–546
- O. Kallenberg, “Symmetries on random arrays and set-indexed processes”, J. Theoret. Probab., 5:4 (1992), 727–765
- O. Kallenberg, Probabilistic symmetries and invariance principles, Probab. Appl. (N. Y.), Springer, New York, 2005, xii+510 pp.
- P. Keevash, “Hypergraph Turan problems”, Surveys in combinatorics 2011 (Exeter, UK), London Math. Soc. Lecture Note Ser., 392, Cambridge Univ. Press, Cambridge, 2011, 83–139
- L. Lovasz, Large networks and graph limits, Amer. Math. Soc. Colloq. Publ., 60, Amer. Math. Soc., Providence, RI, 2012, xiv+475 pp.
- L. Lovasz, B. Szegedy, “Limits of dense graph sequences”, J. Combin. Theory Ser. B, 96:6 (2006), 933–957
- L. Lovasz, B. Szegedy, “Finitely forcible graphons”, J. Combin. Theory Ser. B, 101:5 (2011), 269–301
- M. Malliaris, S. Shelah, “Regularity lemmas for stable graphs”, Trans. Amer. Math. Soc., 366:3 (2014), 1551–1585
- D. Mubayi, A. Razborov, Polynomial to exponential transition in Ramsey theory, 2020 (v1 – 2019), 27 pp.
- J. C. Oxtoby, Measure and category, A survey of the analogies between topological and measure spaces, Grad. Texts in Math., 2, 2nd ed., Springer-Verlag, New York–Berlin, 1980, x+106 pp.
- J. Pach, G. Tardos, “Forbidden paths and cycles in ordered graphs and matrices”, Israel J. Math., 155 (2006), 359–380
- F. Petrov, General removal lemma, 2013, 5 pp.
- F. Petrov, A. Vershik, “Uncountable graphs and invariant measures on the set of universal countable graphs”, Random Structures Algorithms, 37:3 (2010), 389–406
- М. О. Рабин, “Разрешимые теории”, Справочная книга по математической логике, Ч. III, Наука, М., 1982, 77–111
- A. A. Razborov, “Flag algebras”, J. Symbolic Logic, 72:4 (2007), 1239–1282
- А. А. Разборов, “Об интерпретации Фон-Дер-Флаасса экстремальных примеров для $(3,4)$-проблемы Турана”, Алгоритмические вопросы алгебры и логики, Сборник статей. К 80-летию со дня рождения академика Сергея Ивановича Адяна, Тр. МИАН, 274, МАИК “Наука/Интерпериодика”, М., 2011, 269–290
- A. A. Razborov, “Flag algebras: an interim report”, The mathematics of Paul Erdös II, 2nd ed., Springer, New York, 2013, 207–232
- V. Rödl, M. Schacht, “Generalizations of the removal lemma”, Combinatorica, 29:4 (2009), 467–501
- W. Rudin, Functional analysis, Internat. Ser. Pure Appl. Math., 2nd ed., McGraw-Hill, Inc., 1991, xviii+424 pp.
- A. Saad, J. Wolf, “Ramsey multiplicity of linear patterns in certain finite abelian groups”, Q. J. Math., 68:1 (2017), 125–140
- Дж. Шенфилд, Математическая логика, Наука, М., 1975
- E. Spiegel, Ch. J. O'Donnell, Incidence algebras, Monogr. Textbooks Pure Appl. Math., 206, Marcel Dekker, Inc., New York, 1997, x+335 pp.
- B. Szegedy, Gowers norms, regularization and limits of functions on abelian groups, 2010, 35 pp.
- G. Tardos, “Extremal theory of ordered graphs”, Proceedings of the international congress of mathematicians (Rio de Janeiro, 2018), v. 4, World Sci. Publ., Hackensack, NJ, 2018, 3235–3243
- A. Tarski, A. Mostowski, R. M. Robinson, Undecidable theories, Stud. Logic Found. Math., North-Holland Publishing Co., Amsterdam, 1953, xi+98 pp.
- A. Thomason, “Pseudo-random graphs”, Random graphs' 85 (Poznan, 1985), North-Holland Math. Stud., 144, Ann. Discrete Math., 33, North-Holland, Amsterdam, 1987, 307–331
- P. Turan, “Egy grafelmeleti szelsöertek feladatrol”, Mat. Fiz. Lapok, 48 (1941), 436–452
- А. М. Вершик, “Классификация измеримых функций нескольких аргументов и инвариантно распределенные случайные матрицы”, Функц. анализ и его прил., 36:2 (2002), 12–27
- Yu. Yoshida, “Gowers norm, function limits, and parameter estimation”, Proceedings of the 27th annual ACM–SIAM symposium on discrete algorithms, ACM, New York, 2016, 1391–1406
Дополнительные файлы
