The Novikov conjecture
- 作者: Yu G.1
-
隶属关系:
- Texas A&M University
- 期: 卷 74, 编号 3 (2019)
- 页面: 167-184
- 栏目: Articles
- URL: https://journals.rcsi.science/0042-1316/article/view/133569
- DOI: https://doi.org/10.4213/rm9882
- ID: 133569
如何引用文章
详细
参考
- P. Antonini, S. Azzali, G. Skandalis, The Baum–Connes conjecture localised at the unit element of a discrete group, 2018, 19 pp.
- G. N. Arzhantseva, T. Delzant, Examples of random groups, Preprint, 2011 (v1 – 2008), 30 pp.
- A. C. Bartels, “Squeezing and higher algebraic $K$-theory”, $K$-Theory, 28:1 (2003), 19–37
- P. Baum, A. Connes, “K-theory for discrete groups”, Operator algebras and applications, v. 1, London Math. Soc. Lecture Note Ser., 135, Cambridge Univ. Press, Cambridge, 1988, 1–20
- P. Baum, A. Connes, N. Higson, “Classifying space for proper actions and $K$-theory of group $C^ast$-algebras”, $C^ast$-algebras: 1943–1993 (San Antonio, TX, 1993), Contemp. Math., 167, Amer. Math. Soc., Providence, RI, 1994, 240–291
- A. Bartels, W. Lück, “The Borel conjecture for hyperbolic and $mathrm{CAT}(0)$-groups”, Ann. of Math. (2), 175:2 (2012), 631–689
- A. Bartels, W. Lück, H. Reich, “The $K$-theoretic Farrell–Jones conjecture for hyperbolic groups”, Invent. Math., 172:1 (2008), 29–70
- A. Bartels, D. Rosenthal, “On the $K$-theory of groups with finite asymptotic dimension”, J. Reine Angew. Math., 2007:612 (2007), 35–57
- M. E. B. Bekka, P.-A. Cherix, A. Valette, “Proper affine isometric actions of amenable groups”, Novikov conjectures, index theorems and rigidity (Oberwolfach, 1993), v. 2, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995, 1–4
- G. Bell, A. Dranishnikov, “On asymptotic dimension of groups”, Algebr. Geom. Topol., 1 (2001), 57–71
- G. C. Bell, A. N. Dranishnikov, “A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory”, Trans. Amer. Math. Soc., 358:11 (2006), 4749–4764
- M. Bestvina, K. Bromberg, K. Fujiwara, “Constructing group actions on quasi-trees and applications to mapping class groups”, Publ. Math. Inst. Hautes Etudes Sci., 122 (2015), 1–64
- M. Bestvina, V. Guirardel, C. Horbez, Boundary amenability of $operatorname{Out}(F_N)$, 2017, 53 pp.
- N. Brown, E. Guentner, “Uniform embeddings of bounded geometry spaces into reflexive Banach space”, Proc. Amer. Math. Soc., 133:7 (2005), 2045–2050
- G. Carlsson, B. Goldfarb, “The integral $K$-theoretic Novikov conjecture for groups with finite asymptotic dimension”, Invent. Math., 157:2 (2004), 405–418
- G. Carlsson, E. K. Pedersen, “Controlled algebra and the Novikov conjectures for $K$- and $L$-theory”, Topology, 34:3 (1995), 731–758
- S. S. Chang, S. Ferry, G. Yu, “Bounded rigidity of manifolds and asymptotic dimension growth”, J. K-Theory, 1:1 (2008), 129–144
- A. Connes, “Cyclic cohomology and the transverse fundamental class of a foliation”, Geometric methods in operator algebras (Kyoto, 1983), Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow, 1986, 52–144
- A. Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994, xiv+661 pp.
- A. Connes, M. Gromov, H. Moscovici, “Group cohomology with Lipschitz control and higher signatures”, Geom. Funct. Anal., 3:1 (1993), 1–78
- A. Connes, N. Higson, “Deformations, morphismes asymptotiques et $K$-theorie bivariante”, C. R. Acad. Sci. Paris Ser. I Math., 311:2 (1990), 101–106
- A. Connes, H. Moscovici, “Cyclic cohomology, the Novikov conjecture and hyperbolic groups”, Topology, 29:3 (1990), 345–388
- M. W. Davis, “Groups generated by reflections and aspherical manifolds not covered by Euclidean space”, Ann. of Math. (2), 117:2 (1983), 293–324
- A. N. Dranishnikov, S. C. Ferry, S. A. Weinberger, “An etale approach to the Novikov conjecture”, Comm. Pure Appl. Math., 61:2 (2008), 139–155
- A. Dranishnikov, T. Januszkiewicz, “Every Coxeter group acts amenably on a compact space”, Proceedings of the 1999 topology and dynamics conference (Salt Lake City, UT), Topology Proc., 24:Spring (1999), 135–141
- F. T. Farrell, W. C. Hsiang, “On Novikov's conjecture for non-positively curved manifolds. I”, Ann. of Math. (2), 113:1 (1981), 199–209
- F. T. Farrell, L. E. Jones, “A topological analogue of Mostow's rigidity theorem”, J. Amer. Math. Soc., 2:2 (1989), 257–370
- F. T. Farrell, L. E. Jones, Classical aspherical manifolds, CBMS Regional Conf. Ser. in Math., 75, Conf. Board Math. Sci., Washington, DC; Amer. Math. Soc., Providence, RI, 1990, viii+54 pp.
- F. T. Farrell, L. E. Jones, “Topological rigidity for compact nonpositively curved manifolds”, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 3, Amer. Math. Soc., Providence, RI, 1993, 229–274
- F. T. Farrell, L. E. Jones, “Rigidity for aspherical manifolds with $pi_1subsetoperatorname{GL}_m(mathbb R)$”, Asian J. Math., 2:2 (1998), 215–262
- S. C. Ferry, E. K. Pedersen, “Epsilon surgery theory”, Novikov conjectures, index theorems and rigidity (Oberwolfach, 1993), v. 2, London Math. Soc. Lecture Note Ser., 227, Cambridge Univ. Press, Cambridge, 1995, 167–226
- S. C. Ferry, S. Weinberger, “Curvature, tangentiality, and controlled topology”, Invent. Math., 105:2 (1991), 401–414
- S. C. Ferry, S. Weinberger, “A coarse approach to the Novikov conjecture”, Novikov conjectures, index theorems, and rigidity (Oberwolfach, 1993), v. 1, London Math. Soc. Lecture Note Ser., 226, Cambridge Univ. Press, Cambridge, 1995, 147–163
- D. Fisher, L. Silberman, “Groups not acting on manifolds”, Int. Math. Res. Not. IMRN, 2008:16 (2008), rnn060, 11 pp.
- S. Gong, J. Wu, G. Yu, The Novikov conjecture, the group of volume preserving diffeomorphisms and Hilbert–Hadamard spaces, 2019 (v1 – 2018), 52 pp.
- Р. И. Григорчук, “Степени роста конечно-порожденных групп и теория инвариантных средних”, Изв. АН СССР. Сер. матем., 48:5 (1984), 939–985
- M. Gromov, “Hyperbolic groups”, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263
- M. Gromov, “Asymptotic invariants of infinite groups”, Geometric group theory (Sussex, 1991), v. 2, London Math. Soc. Lecture Note Ser., 182, Cambridge Univ. Press, Cambridge, 1993, 1–295
- M. Gromov, “Spaces and questions”, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal., 2000, Special Volume, Part I, 118–161
- M. Gromov, “Random walks in random groups”, Geom. Funct. Anal., 13:1 (2003), 73–146
- E. Guentner, N. Higson, S. Weinberger, “The Novikov conjecture for linear groups”, Publ. Math. Inst. Hautes Etudes Sci., 101 (2005), 243–268
- E. Guentner, R. Tessera, G. Yu, “A notion of geometric complexity and its application to topological rigidity”, Invent. Math., 189:2 (2012), 315–357
- E. Guentner, R. Tessera, G. Yu, “Discrete groups with finite decomposition complexity”, Groups Geom. Dyn., 7:2 (2013), 377–402
- U. Hamenstädt, “Geometry of the mapping class groups. I. Boundary amenability”, Invent. Math., 175:3 (2009), 545–609
- B. Hanke, T. Schick, “The strong Novikov conjecture for low degree cohomology”, Geom. Dedicata, 135 (2008), 119–127
- N. Higson, “Bivariant $K$-theory and the Novikov conjecture”, Geom. Funct. Anal., 10:3 (2000), 563–581
- N. Higson, G. Kasparov, “$E$-theory and $KK$-theory for groups which act properly and isometrically on Hilbert space”, Invent. Math., 144:1 (2001), 23–74
- M. Hilsum, G. Skandalis, “Invariance par homotopie de la signature à coefficients dans un fibre presque plat”, J. Reine Angew. Math., 1992:423 (1992), 73–99
- L. Ji, “The integral Novikov conjectures for linear groups containing torsion elements”, J. Topol., 1:2 (2008), 306–316
- W. B. Johnson, N. L. Randrianarivony, “$ell_p$ $(p > 2)$ does not coarsely embed into a Hilbert space”, Proc. Amer. Math. Soc., 134 (2006), 1045–1050
- G. G. Kasparov, “Equivariant $KK$-theory and the Novikov conjecture”, Invent. Math., 91:1 (1988), 147–201
- G. Kasparov, G. Skandalis, “Groups acting properly on “bolic” spaces and the Novikov conjecture”, Ann. of Math. (2), 158:1 (2003), 165–206
- G. Kasparov, G. Yu, “The Novikov conjecture and geometry of Banach spaces”, Geom. Topol., 16:3 (2012), 1859–1880
- Y. Kida, The mapping class group from the viewpoint of measure equivalence theory, Mem. Amer. Math. Soc., 196, № 916, Amer. Math. Soc., Providence, RI, 2008, viii+190 pp.
- M. Mendel, A. Naor, “Metric cotype”, Ann. of Math. (2), 168:1 (2008), 247–298
- V. Mathai, “The Novikov conjecture for low degree cohomology classes”, Geom. Dedicata, 99 (2003), 1–15
- А. С. Мищенко, “Бесконечномерные представления дискретных групп и высшие сигнатуры”, Изв. АН СССР. Сер. матем., 38:1 (1974), 81–106
- С. П. Новиков, “Топологическая инвариантность рациональных классов Понтрягина”, Докл. АН СССР, 163:2 (1965), 298–300
- С. П. Новиков, “Алгебраическое построение и свойства эрмитовых аналогов $K$-теории над кольцами с инволюцией с точки зрения гамильтонова формализма. Некоторые применения к дифференциальной топологии и теории характеристических классов. I”, Изв. АН СССР. Сер. матем., 34:2 (1970), 253–288
- P. W. Nowak, G. Yu, Large scale geometry, EMS Textbk. Math., Eur. Math. Soc., Zürich, 2012, xiv+189 pp.
- D. Osajda, Small cancellation labellings of some infinite graphs and applications, 2014, 27 pp.
- H. Oyono-Oyono, G. Yu, “On quantitative operator $K$-theory”, Ann. Inst. Fourier (Grenoble), 65:2 (2015), 605–674
- D. A. Ramras, R. Tessera, G. Yu, “Finite decomposition complexity and the integral Novikov conjecture for higher algebraic $K$-theory”, J. Reine Angew. Math., 694 (2014), 129–178
- J. Roe, Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Amer. Math. Soc., 104, № 497, Amer. Math. Soc., Providence, RI, 1993, x+90 pp.
- J. Roe, Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conf. Ser. in Math., 90, Conf. Board Math. Sci., Washington, DC; Amer. Math. Soc., Providence, RI, 1996, x+100 pp.
- J. Roe, “Hyperbolic groups have finite asymptotic dimension”, Proc. Amer. Math. Soc., 133:9 (2005), 2489–2490
- J. Rosenberg, “$C^ast$-algebras, positive scalar curvature, and the Novikov conjecture”, Inst. Hautes Etudes Sci. Publ. Math., 58 (1983), 197–212
- J. Rosenberg, “Manifolds of positive scalar curvature: a progress report”, Surveys in differential geometry, v. XI, Surv. Differ. Geom., 11, Int. Press, Somerville, MA, 2007, 259–294
- Z. Sela, “Uniform embeddings of hyperbolic groups in Hilbert spaces”, Israel J. Math., 80:1-2 (1992), 171–181
- G. Skandalis, J. L. Tu, G. Yu, “The coarse Baum–Connes conjecture and groupoids”, Topology, 41:4 (2002), 807–834
- S. Weinberger, “Aspects of the Novikov conjecture”, Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988), Contemp. Math., 105, Amer. Math. Soc., Providence, RI, 1990, 281–297
- S. Weinberger, Variations on a theme of Borel, Book draft, 2017, 326 pp.
- S. Weinberger, Z. Xie, G. Yu, “Additivity of higher rho invariants and nonrigidity of topological manifolds”, Comm. Pure Appl. Math. (to appear)
- S. Weinberger, G. Yu, “Finite part of operator $K$-theory for groups finitely embeddable into Hilbert space and the degree of nonrigidity of manifolds”, Geom. Topol., 19:5 (2015), 2767–2799
- R. Willett, G. Yu, Higher index theory, Book draft, 2019, 503 pp.,par
- G. Yu, “The Novikov conjecture for groups with finite asymptotic dimension”, Ann. of Math. (2), 147:2 (1998), 325–355
- G. Yu, “The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space”, Invent. Math., 139:1 (2000), 201–240
补充文件
