Критические конфигурации трехмерных тел и теория Морса для MIN-функций
- Авторы: Огиевецкий О.В.1,2,3, Шлосман С.Б.1,4,5
-
Учреждения:
- Aix-Marseille Université
- Физический институт им. П. Н. Лебедева Российской академии наук
- Казанский (Приволжский) федеральный университет
- Институт проблем передачи информации РАН
- Сколковский институт науки и технологий, территория Инновационного Центра "Сколково"
- Выпуск: Том 74, № 4 (2019)
- Страницы: 59-86
- Раздел: Статьи
- URL: https://journals.rcsi.science/0042-1316/article/view/133563
- DOI: https://doi.org/10.4213/rm9899
- ID: 133563
Цитировать
Аннотация
Об авторах
Олег Викторович Огиевецкий
Aix-Marseille Université; Физический институт им. П. Н. Лебедева Российской академии наук; Казанский (Приволжский) федеральный университет
Email: oleg@cpt.univ-mrs.fr
кандидат физико-математических наук
Семен Бенсионович Шлосман
Aix-Marseille Université; Институт проблем передачи информации РАН; Сколковский институт науки и технологий, территория Инновационного Центра "Сколково"
Email: shlosman@cpt.univ-mrs.fr
доктор физико-математических наук
Список литературы
- R. Buckminster Fuller, E. J. Applewhite, Synergetics. Explorations in the geometry of thinking, MacMillan Co., New York, 1975, xxxii+876 pp.
- J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren Math. Wiss., 290, 3rd ed., Springer-Verlag, New York, 1999, lxxiv+703 pp.
- H. S. M. Coxeter, Regular polytopes, 3rd ed., Dover Publications, Inc., New York, 1973, xiv+321 pp.
- L. Fejes Toth, Lagerungen in der Ebene auf der Kugel und im Raum, Grundlehren Math. Wiss., 65, 2. verb. und erweit. Aufl., Springer-Verlag, Berlin–New York, 1972, xi+238 pp.
- M. Firsching, Optimization methods in discrete geometry, Dissertation, Freie Universität, Freie Univ., Berlin, 2016, 85 pp., par
- A. Heppes, L. Szabo, “On the number of cylinders touching a ball”, Geom. Dedicata, 40:1 (1991), 111–116
- W. Kuperberg, “How many unit cylinders can touch a unit ball? (Problem 3.3)”, DIMACS Workshop on polytopes and convex sets, Rutgers Univ., 1990
- R. Kusner, W. Kusner, J. C. Lagarias, S. Shlosman, “Configuration spaces of equal spheres touching a given sphere: the twelve spheres problem”, New trends in intuitive geometry, Bolyai Soc. Math. Stud., 27, Janos Bolyai Math. Soc., Budapest, 2018, 219–277
- J. C. Lagarias (ed.), The Kepler conjecture. The Hales–Ferguson proof, Springer, New York, 2011, xiv+456 pp.
- O. Ogievetsky, S. Shlosman, “The six cylinders problem: $mathbb D_{3}$-symmetry approach”, Discrete Comput. Geom., publ. online 2019, 1–20
- O. Ogievetsky, S. Shlosman, Extremal cylinder configurations I: Configuration $C_{mathfrak{m}}$, 2018, 38 pp.
- O. Ogievetsky, S. Shlosman, Extremal cylinder configurations II: Configuration $O_{6}$, 2019, 25 pp.
- O. Ogievetsky, S. Shlosman, Platonic compounds of cylinders, 2019, 35 pp.
Дополнительные файлы
