Examples of solution of the inverse scattering problem and the equations of the Novikov–Veselov hierarchy from the scattering data of point potentials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The inverse scattering problem is considered for the two-dimensional Schrödinger equation at fixed positive energy. The results include inverse scattering reconstructions from the simplest scattering amplitudes. In particular, a complete analytic solution is given of the phased and phaseless inverse scattering problems for single-point potentials of Bethe–Peierls–Fermi–Zeldovich–Berezin–Faddeev type. Numerical inverse scattering reconstructions from the simplest scattering amplitudes are then studied using the method of the Riemann–Hilbert–Manakov problem in soliton theory. Finally, these numerical inverse scattering results are used to construct corresponding numerical solutions of the non-linear equations of the Novikov–Veselov hierarchy at fixed positive energy.Bibliography: 21 titles.

About the authors

Aleksey Dmitrievich Agal'tsov

Max Planck Institute for Solar System Research

Email: agaltsov@mps.mpg.de

Roman Gennadievich Novikov

Institute of Earthquake Prediction Theory and Mathematical Geophysics RAS; École Polytechnique, Centre de Mathématiques Appliquées

Email: roman.novikov@polytechnique.edu
Doctor of physico-mathematical sciences

References

  1. R. G. Novikov, “The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator”, J. Funct. Anal., 103:2 (1992), 409–463
  2. П. Г. Гриневич, “Преобразование рассеяния для двумерного оператора Шрeдингера с убывающим на бесконечности потенциалом при фиксированной ненулевой энергии”, УМН, 55:6(336) (2000), 3–70
  3. P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions of multipoint potentials”, Eurasian J. Math. Computer Appl., 1:2 (2013), 76–91
  4. R. G. Novikov, “Inverse scattering without phase information”, Seminaire Laurent Schwartz – Equations aux derivees partielles et applications. Annee 2014–2015, Ed. Ec. Polytech., Palaiseau, 2016, Exp. No. XVI, 13 pp.
  5. А. П. Веселов, С. П. Новиков, “Конечнозонные двумерные потенциальные операторы Шредингера. Явные формулы и эволюционные уравнения”, Докл. АН СССР, 279:1 (1984), 20–24
  6. А. П. Веселов, С. П. Новиков, “Конечнозонные двумерные операторы Шредингера. Потенциальные операторы”, Докл. АН СССР, 279:4 (1984), 784–788
  7. С. В. Манаков, “Метод обратной задачи рассеяния и двумерные эволюционные уравнения”, УМН, 31:5(191) (1976), 245–246
  8. В. Е. Захаров, С. В. Манаков, С. П. Новиков, Л. П. Питаевский, Теория солитонов. Метод обратной задачи, Наука, М., 1980, 320 с.
  9. Р. Г. Новиков, “Построение двумерного оператора Шредингера с данной амплитудой рассеяния при фиксированной энергии”, ТМФ, 66:2 (1986), 234–240
  10. P. G. Grinevich, R. G. Novikov, “Transparent potentials at fixed energy in dimension two. Fixed energy dispersion relations for the fast decaying potentials”, Comm. Math. Phys., 174:2 (1995), 409–446
  11. Р. Г. Новиков, “Приближенное решение обратной задачи квантовой теории рассеяния при фиксированной энергии в размерности 2”, Солитоны, геометрия, топология — на перекрестках, Сборник статей. К 60-летию со дня рождения академика Сергея Петровича Новикова, Тр. МИАН, 225, Наука, МАИК “Наука/Интерпериодика”, М., 1999, 301–318
  12. S. V. Manakov, “The inverse scattering transform for the time dependent Schrödinger equation and Kadomtsev–Petviashvili equation”, Phys. D, 3:1-2 (1981), 420–427
  13. Л. Д. Фаддеев, “Обратная задача квантовой теории рассеяния. II”, Итоги науки и техн. Сер. Соврем. пробл. матем., 3, ВИНИТИ, М., 1974, 93–180
  14. П. Г. Гриневич, Р. Г. Новиков, “Аналоги многосолитонных потенциалов для двумерного оператора Шредингера и нелокальная задача Римана”, Докл. АН СССР, 286:1 (1986), 19–22
  15. В. А. Буров, Н. В. Алексеенко, О. Д. Румянцева, “Многочастотное обобщение алгоритма Новикова для решения обратной двумерной задачи рассеивания”, Акустич. журн., 55:6 (2009), 784–798
  16. В. А. Буров, С. А. Морозов, “Связь между амплитудой и фазой сигнала, рассеянного ‘точечной’ акустической неоднородностью”, Акустич. журн., 47:6 (2001), 751–756
  17. Н. Р. Бадалян, В. А. Буров, С. А. Морозов, О. Д. Румянцева, “Рассеяние на акустических граничных рассеивателях с малыми волновыми размерами и их восстановление”, Акустич. журн., 55:1 (2009), 3–10
  18. A. D. Agaltsov, R. G. Novikov, Simplest examples of inverse scattering on the plane at fixed energy, 2017, 14 pp.
  19. С. Альбеверио, Ф. Гестези, Р. Хеэг-Крон, X. Хольден, Решаемые модели в квантовой механике, Мир, М., 1991, 568 с.
  20. P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for point potentials in two dimensions”, Phys. Lett. A, 376:12-13 (2012), 1102–1106
  21. R. G. Novikov, “Inverse scattering for the Bethe–Peierls model”, Eurasian J. Math. Computer Appl., 6:1 (2018), 52–55

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Agal'tsov A.D., Novikov R.G.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».