Real-normalized differentials: limits on stable curves

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We study the behaviour of real-normalized (RN) meromorphic differentials on Riemann surfaces under degeneration. We describe all possible limits of RN differentials on any stable curve. In particular we prove that the residues at the nodes are solutions of a suitable Kirchhoff problem on the dual graph of the curve. We further show that the limits of zeros of RN differentials are the divisor of zeros of a twisted differential — an explicitly constructed collection of RN differentials on the irreducible components of the stable curve, with higher order poles at some nodes. Our main tool is a new method for constructing differentials (in this paper, RN differentials, but the method is more general) on smooth Riemann surfaces, in a plumbing neighbourhood of a given stable curve. To accomplish this, we think of a smooth Riemann surface as the complement of a neighbourhood of the nodes in a stable curve, with boundary circles identified pairwise. Constructing a differential on a smooth surface with prescribed singularities is then reduced to a construction of a suitable normalized holomorphic differential with prescribed ‘jumps’ (mismatches) along the identified circles (seams). We solve this additive analogue of the multiplicative Riemann–Hilbert problem in a new way, by using iteratively the Cauchy integration kernels on the irreducible components of the stable curve, instead of using the Cauchy kernel on the plumbed smooth surface. As the stable curve is fixed, this provides explicit estimates for the differential constructed, and allows a precise degeneration analysis.Bibliography: 22 titles.

About the authors

Samuel Grushevsky

Stony Brook University

Email: sam@math.stonybrook.edu

Igor Moiseevich Krichever

Columbia University; Skolkovo Institute of Science and Technology; HSE University; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute); L.D. Landau Institute for Theoretical Physics of Russian Academy of Sciences

Email: krichev@math.columbia.edu
Doctor of physico-mathematical sciences, Professor

Chaya Norton

Concordia University; Université de Montréal, Centre de Recherches Mathématiques

Email: nortonch@crm.umontreal.ca

References

  1. E. Arbarello, M. Cornalba, P. A. Griffiths, Geometry of algebraic curves, With a contribution by J. D. Harris, v. II, Grundlehren Math. Wiss., 268, Springer, Heidelberg, 2011, xxx+963 pp.
  2. M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, M. Moeller, “Compactification of strata of Abelian differentials”, Duke Math. J., 167:12 (2018), 2347–2416
  3. L. Bers, “Spaces of degenerating Riemann surfaces”, Discontinuous groups and Riemann surfaces (Univ. Maryland, College Park, MD, 1973), Ann. of Math. Stud., 79, Princeton Univ. Press, Princeton, NJ, 1974, 43–55
  4. D. Chen, “Degenerations of abelian differentials”, J. Differential Geom., 107:3 (2017), 395–453
  5. G. Farkas, R. Pandharipande, “The moduli space of twisted canonical differentials”, J. Inst. Math. Jussieu, 17:3 (2018), 615–672
  6. Q. Gendron, “The Deligne–Mumford and the incidence variety compactifications of the strata of $Omegamathcal{M}_g$”, Ann. Inst. Fourier (Grenoble), 68:3 (2018), 1169–1240
  7. W. D. Gillam, Oriented real blowup, preprint, 21 pp., par
  8. S. Grushevsky, I. Krichever, “The universal Whitham hierarchy and the geometry of the moduli space of pointed Riemann surfaces”, Surveys in differential geometry, v. XIV, Surv. Differ. Geom., 14, Geometry of Riemann surfaces and their moduli spaces, Int. Press, Somerville, MA, 2009, 111–129
  9. S. Grushevsky, I. Krichever, “Real-normalized differentials and the elliptic Calogero–Moser system”, Complex geometry and dynamics. The Abel symposium 2013, Abel Symp., 10, Springer, Cham, 2015, 123–137
  10. S. Grushevsky, I. Krichever, Real-normalized differentials and cusps of plane curves, in preparation
  11. X. Hu, C. Norton, “General variational formulas for Abelian differentials”, Int. Math. Res. Notices, 2018, rny106, Publ. online
  12. И. М. Кричевер, “Спектральная теория ‘конечнозонных’ нестационарных операторов Шрeдингера. Нестационарная модель Пайерлса”, Функц. анализ и его прил., 20:3 (1986), 42–54
  13. И. М. Кричевер, “Метод усреднения для двумерных ‘интегрируемых’ уравнений”, Функц. анализ и его прил., 22:3 (1988), 37–52
  14. И. М. Кричевер, “Вещественно-нормированные дифференциалы и гипотеза Арбарелло”, Функц. анализ и его прил., 46:2 (2012), 37–51
  15. И. М. Кричевер, С. П. Новиков, “Алгебры типа Вирасоро, римановы поверхности и струны в пространстве Минковского”, Функц. анализ и его прил., 21:4 (1987), 47–61
  16. L. Lang, Harmonic tropical curves, 2015, 46 pp.
  17. C. R. Norton, Limits of real-normalized differentials on stable curves, Ph.D. Thesis, Stony Brook Univ., 2014, 115 pp.
  18. B. Osserman, “Limit linear series for curves not of compact type”, J. Reine Angew. Math., 2017, Publ. online
  19. Yu. L. Rodin, The Riemann boundary problem on Riemann surfaces, Math. Appl. (Soviet Ser.), 16, D. Reidel Publishing Co., Dordrecht, 1988, xiv+199 pp.
  20. М. Шиффер, Д. К. Спенсер, Функционалы на конечных римановых поверхностях, ИЛ, М., 1957, 347 с.
  21. S. A. Wolpert, “Infinitesimal deformations of nodal stable curves”, Adv. Math., 244 (2013), 413–440
  22. Э. И. Зверович, “Краевые задачи теории аналитических функций в гeльдеровских классах на римановых поверхностях”, УМН, 26:1(157) (1971), 113–179

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Grushevsky S., Krichever I.M., Norton C.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).