Polynomial non-integrability of magnetic billiards on the sphere and the hyperbolic plane

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Magnetic billiards in a convex domain with smooth boundary on a constant-curvature surface in a constant magnetic field is considered in this paper. The question of the existence of an integral of motion which is a polynomial in the components of the velocity is investigated. It is shown that if such an integral exists, then the boundary of the domain defines a non-singular algebraic curve in $\mathbb{C}^3$. It is also shown that for a domain other than a geodesic disk, magnetic billiards does not admit a polynomial integral for all but perhaps finitely many values of the magnitude of the magnetic field. To prove our main theorems a new dynamical system, ‘outer magnetic billiards’, on a constant-curvature surface is introduced, a system ‘dual’ to magnetic billiards. By passing to this dynamical system one can apply methods of algebraic geometry to magnetic billiards.Bibliography: 30 titles.

About the authors

Misha L. Bialy

Tel Aviv University, School of Mathematical Sciences

Andrei Evgen'evich Mironov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: mironov@math.nsc.ru
Doctor of physico-mathematical sciences, no status

References

  1. P. Albers, G. D. Banhatti, M. Herrmann, Numerical simulations of magnetic billiards in a convex domain in ${mathbb R}^2$, 2017, 10 pp.
  2. A. Avila, J. De Simoi, V. Kaloshin, “An integrable deformation of an ellipse of small eccentricity is an ellipse”, Ann. of Math. (2), 184:2 (2016), 527–558
  3. N. Berglund, H. Kunz, “Integrability and ergodicity of classical billiards in a magnetic field”, J. Statist. Phys., 83:1-2 (1996), 81–126
  4. M. Bialy, “On totally integrable magnetic billiards on constant curvature surface”, Electron. Res. Announc. Math. Sci., 19 (2012), 112–119
  5. M. Bialy, A. E. Mironov, “Algebraic non-integrability of magnetic billiards”, J. Phys. A, 49:45 (2016), 455101, 18 pp.
  6. М. Бялый, А. Е. Миронов, “О полиномиальных интегралах четвертой степени бильярда Биркгофа”, Современные проблемы механики, Сборник статей, Тр. МИАН, 295, МАИК “Наука/Интерпериодика”, М., 2016, 34–40
  7. M. Bialy, A. E. Mironov, “Angular billiard and algebraic Birkhoff conjecture”, Adv. Math., 313 (2017), 102–126
  8. M. Bialy, A. E. Mironov, “Algebraic Birkhoff conjecture for billiards on sphere and hyperbolic plane”, J. Geom. Phys., 115 (2017), 150–156
  9. M. Bialy, A. E. Mironov, “A survey on polynomial in momenta integrals for billiard problems”, Philos. Trans. Roy. Soc. A, 376:2131 (2018), 20170418, 19 pp.
  10. С. В. Болотин, “Интегрируемые биллиарды Биркгофа”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1990, № 2, 33–36
  11. С. В. Болотин, “Интегрируемые бильярды на поверхностях постоянной кривизны”, Матем. заметки, 51:2 (1992), 20–28
  12. A. Glutsyuk, “On polynomially integrable Birkhoff billiards on surfaces of constant curvature”, J. Eur. Math. Soc. (JEMS) (to appear)
  13. А. А. Глуцюк, “О двумерных полиномиально интегрируемых бильярдах на поверхностях постоянной кривизны”, Докл. РАН, 481:6 (2018), 594–598
  14. B. Gutkin, “Hyperbolic magnetic billiards on surfaces of constant curvature”, Comm. Math. Phys., 217:1 (2001), 33–53
  15. E. Gutkin, S. Tabachnikov, “Billiards in Finsler and Minkowski geometries”, J. Geom. Phys., 40:3-4 (2002), 277–301
  16. Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981, 600 с.
  17. V. Kaloshin, A. Sorrentino, “On the local Birkhoff conjecture for convex billiards”, Ann. of Math. (2), 188:1 (2018), 315–380
  18. В. В. Козлов, “Полиномиальные законы сохранения для газа Лоренца и газа Больцмана–Гиббса”, УМН, 71:2(428) (2016), 81–120
  19. В. В. Козлов, Д. В. Трещeв, Биллиарды. Генетическое введение в динамику систем с ударами, Изд-во МГУ, М., 1991, 168 с.
  20. M. Robnik, M. V. Berry, “Classical billiards in magnetic fields”, J. Phys. A, 18:9 (1985), 1361–1378
  21. V. Schastnyy, D. Treschev, “On local integrability in billiard dynamics”, Exp. Math. (to appear) , publ. online 2017
  22. С. Л. Табачников, “Внешние биллиарды”, УМН, 48:6(294) (1993), 75–102
  23. S. Tabachnikov, Billiards, Panor. Synth., 1, Soc. Math. France, Paris, 1995, vi+142 pp.
  24. S. Tabachnikov, “Remarks on magnetic flows and magnetic billiards, Finsler metrics and a magnetic analog of Hilbert's fourth problem”, Modern dynamical systems and applications, Cambridge Univ. Press, Cambridge, 2004, 233–250
  25. S. Tabachnikov, “On algebraically integrable outer billiards”, Pacific J. Math., 235:1 (2008), 89–92
  26. D. Treschev, “Billiard map and rigid rotation”, Phys. D, 255 (2013), 31–34
  27. Д. В. Трещев, “Об одной задаче сопряжения в динамике бильярда”, Избранные вопросы математики и механики, Сборник статей. К 150-летию со дня рождения академика Владимира Андреевича Стеклова, Тр. МИАН, 289, МАИК “Наука/Интерпериодика”, М., 2015, 309–317
  28. D. Treschev, “A locally integrable multi-dimensional billiard system”, Discrete Contin. Dyn. Syst., 37:10 (2017), 5271–5284
  29. A. P. Veselov, “Confocal surfaces and integrable billiards on the sphere and in the Lobachevsky space”, J. Geom. Phys., 7:1 (1990), 81–107
  30. B. L. van der Waerden, Einführung in die algebraische Geometrie, Grundlehren Math. Wiss., 51, Springer, Berlin, 1939, vii+247 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Bialy M.L., Mironov A.E.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).