PTEN knockout leads to premature senescence of human endometrial stromal cells

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

One of the defense mechanisms against neoplastic transformation of cells in response to oncogenic stimuli is cellular senescence. However, the ability of cells to activate this defense reaction depends on their nature and is not inherent in all cell types. Within the present study, we investigated reaction of human endometrial stromal cells (EnSC) towards classical oncogenic stimulus – PTEN inactivation. By using CRISPR/Cas9 genome editing technology, we generated EnSC line with PTEN knockout. We showed that reduced PTEN expression results in proliferation loss, cell hypertrophy, accumulation of lipofuscin and disturbed redox balance. Together these data favors senescence induction in PTEN-knockout EnSC. While studying the molecular mechanisms, we established the key role of the PI3K/AKT signaling pathway in the implementation of the EnSC senescence program under conditions of PTEN knockout. Inhibiting this signaling pathway by LY294002 prevented both the phenotypic manifestations of premature senescence and cell cycle arrest in PTEN-knockout EnSC. Thus, the development of premature senescence in response to reduced expression of the oncosuppressor PTEN can be considered as a protective mechanism that prevents malignant transformation of EnSC.

Texto integral

Acesso é fechado

Sobre autores

P. Parfenova

Institute of Cytology RAS

Email: borodkina618@gmail.com

Группа механизмов клеточного старения

Rússia, St. Petersburg, 194064

P. Deryabin

Institute of Cytology RAS

Email: borodkina618@gmail.com

Группа механизмов клеточного старения

Rússia, St. Petersburg, 194064

D. Pozdnyakov

Institute of Cytology RAS

Email: borodkina618@gmail.com

Группа механизмов клеточного старения

Rússia, St. Petersburg, 194064

A. Borodkina

Institute of Cytology RAS

Autor responsável pela correspondência
Email: borodkina618@gmail.com

Группа механизмов клеточного старения

Rússia, St. Petersburg, 194064

Bibliografia

  1. Грюкова А.А., Шатрова А.Н., Дерябин П.И., Бородкина А.В., Князев Н.А., Никольский Н.Н., Бурова Е.Б. 2017. Модуляция фенотипических признаков старения стволовых эндометриальных клеток в условиях ингибирования mTOR и MAP-киназных сигнальных путей. Цитология. Т. 59. № 6. С. 410. (Grukova A.A., Shatrova A.N., Deryabin P.I., Borodkina A.V., Knyazev N.A., Nikolsky N.N., Burova E.B. 2017. Modulation of senescence phenotype of human endometrial stem cells under inhibition of mtor and map-kinase signaling pathways. Tsitologiia. V. 59. P. 410.)
  2. Земелько В.И., Гринчук Т.М., Домнина А.П., Арцыбашева И.В., Зенин В.В., Кирсанов А.А., Бичевая Н.К., Корсак В.С., Никольский Н.Н. 2011. Мультипотентные мезенхимные стволовые клетки десквамированного эндометрия. Выделение, характеристика и использование в качестве фидерного слоя для культивирования эмбриональных стволовых линий человека. Цитология. Т. 53. № 12. С. 919. (Zemelko V.I., Grinchuk T.M., Domnina A.P., Artzibasheva I.V., Zenin V.V., Kirsanov A.A., Bichevaia N.K., Korsak V.S., Nikolsky N.N. 2011. Multipotent mesenchymal stem cells of desquamated endometrium: Isolation, characterization, and application as a feeder layer for maintenance of human embryonic stem cells. Tsitologiia. V. 53. P. 919.)
  3. Alimonti A., Nardella C., Chen Z., Clohessy J.G., Carracedo A., Trotman L.C., Cheng K., Varmeh S., Kozma S.C., Thomas G., Rosivatz E., Woscholski R., Cognetti F., Scher H.I., Pandolfi P.P. 2010. A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J. Clin. Invest. V. 120. P. 681.
  4. Borodkina A., Shatrova A., Abushik P., Nikolsky N., Burova E. 2014. Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging. V. 6. P. 481.
  5. Bousset L., Gil J. 2022. Targeting senescence as an anticancer therapy. Mol. Oncol. V. 16. P. 3855.
  6. Campisi J., Dimri G., Hara E. 1996. Handbook of the biology of aging. N.-Y., USA: Academic Press.
  7. Chen C.-Y., Chen J., He L., Stiles B.L. 2018. PTEN: tumor suppressor and metabolic regulator. Front. Endocrino. V. 9. P. 338.
  8. Chen Z., Trotman L.C., Shaffer D., Lin H.-K., Dotan Z.A., Niki M., Koutcher J.A., Scher H.I., Ludwig T., Gerald W., Cordon-Cardo C., Pandolfi P.P. 2005. Crucial role of p53-dependent cellular senescence in suppression of PTEN-deficient tumorigenesis. Nature. V. 436. P. 725.
  9. Deryabin P., Griukova A., Shatrova A., Petukhov A., Nikolsky N., Borodkina A. 2019. Optimization of lentiviral transduction parameters and its application for CRISPR-based secretome modification of human endometrial mesenchymal stem cells. Cell Cycle. V. 18. P. 742.
  10. Duan S., Yuan G., Liu X., Ren R., Li J., Zhang W., Wu J., Xu X., Fu L., Li Y., Yang J., Zhang W., Bai R., Yi F., Suzuki K., et al., 2015. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nature Commun. V. 6. P. 10068.
  11. Huang W., Hickson L.J., Eirin A., Kirkland J.L., Lerman L.O. 2022. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. V. 18. P. 611.
  12. Jung S.H., Hwang H.J., Kang D., Park H.A., Lee H.C., Jeong D., Lee K., Park H.J., Ko Y.G., Lee J.S. 2019. mTOR kinase leads to PTEN-loss-induced cellular senescence by phosphorylating p53. Oncogene. V. 38. P. 1639.
  13. Kappes H., Goemann C., Bamberger A.M., Löning T., Milde-Langosch K. 2001. PTEN expression in breast and endometrial cancer: correlation with steroid hormone receptor status. Pathobiology. V. 69. P. 136.
  14. Kim J.S., Lee C., Bonifant C.L., Ressom H., Waldman T. 2007. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol. Cell Biol. V. 27. P. 662.
  15. Lancaster J.M., Risinger J.I., Carney M.E., Barrett J.C., Berchuck A. 2001. Mutational analysis of the PTEN gene in human uterine sarcomas. Am. J. Obstet. Gynecol. V. 184. P. 1051.
  16. Legut M., Daniloski Z., Xue X., McKenzie D., Guo X., Wessels H.-H., Sanjana N.E. 2020. High-Throughput Screens of PAM-Flexible Cas9 Variants for Gene Knockout and Transcriptional Modulation. Cell reports. V. 30. P. 2859.
  17. Li J., Yen C., Liaw D., Podsypanina K., Bose S., Wang S.I., Puc J., Miliaresis C., Rodgers L., McCombie R., Bigner S.H., Giovanella B.C., Ittmann M., Tycko B., Hibshoosh H., Wigler M.H., Parsons R. 1997. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. V. 275. P. 1943.
  18. Parisotto M., Grelet E., El Bizri R., Metzger D. 2018a. Senescence controls prostatic neoplasia driven by PTEN loss. Mol. Cell Oncol. V. 6. P. 1511205.
  19. Parisotto M., Grelet E., El Bizri R., Dai Y., Terzic J., Eckert D., Gargowitsch L., Bornert J.-M., Metzger D. 2018b. PTEN deletion in luminal cells of mature prostate induces replication stress and senescence in vivo. J. Exper. Med. V. 215. P. 1749.
  20. Shlush L., Itzkovitz S., Cohen A., Rutenberg A., Berkovitz R., Yehezkel S., Shahar H., Selig S., Skorecki K. 2011. Quantitative digital in situ senescence-associated β-galactosidase assay. BMC Cell Biol. V. 12. P. 16.
  21. St-Germain M.E., Gagnon V., Mathieu I., Parent S., Asselin E. 2004a. Akt regulates COX-2 mRNA and protein expression in mutated-PTEN human endometrial cancer cells. Int. J. Oncol. V. 24. P. 1311.
  22. St-Germain M.E., Gagnon V., Parent S., Asselin E. 2004b. Regulation of COX-2 protein expression by Akt in endometrial cancer cells is mediated through NF-kappaB/IkappaB pathway. Mol. Cancer. V. 3. P. 7.
  23. Steelman L.S., Chappell W.H., Abrams S.L., Kempf R.C., Long J., Laidler P., Mijatovic S., Maksimovic-Ivanic D., Stivala F., Mazzarino M.C., Donia M., Fagone P., Malaponte G., Nicoletti F., Libra M., et al., 2011. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY). V. 3. P. 192.
  24. Toropov A.L., Deryabin P.I., Shatrova A.N., Borodkina A.V. 2023. Oncogene-induced senescence is crucial antitumor defense mechanism of human endometrial stromal cells. Int. J. Mol. Sci. V. 24. P. 14089.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Confirmation of the effectiveness of the PTEN gene knockout system. K – control eSCs with nonsense guideRNA; 1–3 – eSCs carrying a knockout system with three different guideRNAs; a – PTEN gene mRNA expression; PTEN expression values are normalized to the expression level of the reference gene GAPDH. The average values and their standard deviations are presented (n = 3, n is the number of reaction repetitions); ** – differences from control are significant at – p < 0.01 compared to control, ANOVA test with Tukey’s correction; b – PTEN protein expression levels detected using specific antibodies; on the right are the piers. masses; GAPDH was used as a loading control.

Baixar (115KB)
3. Fig. 2. A decrease in PTEN expression leads to the initiation of premature aging in eSCs. K – control eSCs with nonsense guideRNA; a – growth curves; b – average cell size determined by direct light scattering (SL); c – intensity of autofluorescence (AF) of cells, reflecting the accumulation of lipofuscin granules; d – levels of phosphorylation of proteins p53 (pp53) and Rb (pRb), as well as protein expression p21Waf1/Cip1 (p21), detected using specific antibodies; molecular weights are indicated on the right; GAPDH was used as a loading control; e, f – respectively, quantitative assessment of cytochemical staining SA-β-Gal and micrographs; a–c – mean values and standard deviations from three repeat measurements are presented; e – coloring of 100 cells was assessed; *** – differences from control are significant at p < 0.001 (Welch’s t-test).

Baixar (312KB)
4. Fig. 3. Changes in redox balance and mitochondrial functioning in control eSCs with nonsense guideRNA (K) and in eSCs with PTEN gene knockout; a – levels of intracellular ROS determined by fluorescence intensity (FI) of the DCF dye; b – levels of mitochondrial ROS determined by the IF of the DHR123 dye; c – change in mitochondrial membrane potential determined by the IF of the JC-1 dye. Mean values and their standard deviations from triplicate measurements are presented; differences from control are significant at p < 0.001 (***) or p < 0.01 (**); Welch's t-test.

Baixar (131KB)
5. Fig. 4. Activity of the PI3K/AKT signaling pathway in PTEN-regulated induction of eSC aging and its modulation by the LY inhibitor in control eSCs with nonsense guideRNA (K) and in eSCs with PTEN gene knockout (Nok.). Cells with a knockout of the PTEN gene were treated with LY at concentrations of 5 μM (LY 5), 10 μM (LY 10), or 20 μM (LY 20) for 6 days; a – levels of phosphorylation of AKT and Rb, as well as expression of the p21Waf1/Cip1 (p21) protein, detected using specific antibodies; molecular weights are indicated on the right; GAPDH was used as a loading control; b – growth curves; c – average cell size determined by direct light scattering (SL); d – autofluorescence intensity (AF) of cells, reflecting the accumulation of lipofuscin granules. Mean values and their standard deviations from triplicate measurements are presented; differences from the control are significant at p < 0.001 (***) or p < 0.01(**), ANOVA test corrected for multiple comparisons according to Tukey.

Baixar (424KB)
6. Fig. 5. Inhibition of AKT prevents the increase in SA-β-Gal activity in eSCs by knockout of the PTEN gene. Shown are control eSCs with nonsense guideRNA (K), eSCs with PTEN gene knockout (Nok.), and eSCs with PTEN gene knockout treated with 20 μM LY (Nok. + LY20); a, b – microphotographs of eSCs and quantitative assessment of cytochemical staining SA-β-Gal, respectively; 6 days after adding the inhibitor. The average values and their standard deviations are presented (the color of 100 cells was assessed); differences from control are significant at p < 0.001 (***); ANOVA test with Tukey's correction for multiple comparisons.

Baixar (152KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies