Analysis of the role of Nav1.5 slow inactivation in the development of inherited cardiac pathology

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Voltage-gated cardiac sodium channels Nav1.5 are responsible for the initiation and propagation of action potentials in cardiomyocytes. Dysfunction of Nav1.5 can be caused both by pathogenic variants in the SCN5A gene itself, which encodes Nav1.5, and by genetic variants in the genes of other proteins, regulating channel activity and trafficking. The change of different phases of the action potential is determined by the strict temporal organization of activation and inactivation of various ion channels. Transitions between channel functional states (for example, to slow inactivated state) can be influenced by various factors and proteins interacting with the channel. Despite the fact that the process of slow inactivation of the channel has been known for several decades, its role in the mechanism of development of hereditary heart pathology remains unclear. In this work, using the patch clamp method in whole-cell leads, we studied changes in the process of slow Nav1.5 inactivation under the influence of various mutations in structural genes (DSP-H1684R, LMNA-R249Q, FLNC-R1267Q, FLNC-V2264M) associated with a genetically determined myocardial pathology leading to dysfunction of cardiomyocytes. The study used a model of cardiomyocytes differentiated from induced pluripotent stem cells (СM-iPSCs). We have demonstrated an increase in slow inactivation in the model of CM-iPSCs obtained from patients with a phenotype of cardiomyopathy combined with ventricular arrhythmias. Thus, this work contributes to understanding the role of the slow inactivation process in the mechanism of the development of heart pathology.

Full Text

Restricted Access

About the authors

A. K. Zaytseva

World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre; Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: zaytseva_ak@almazovcentre.ru
Russian Federation, Saint Petersburg; Saint Petersburg

K. I. Perepelina

World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre; Institute of Cytology, Russian Academy of Sciences

Email: zaytseva_ak@almazovcentre.ru
Russian Federation, Saint Petersburg; Saint Petersburg

A. A. Kostareva

World-Class Research Centre for Personalized Medicine, Almazov National Medical Research Centre

Email: zaytseva_ak@almazovcentre.ru
Russian Federation, Saint Petersburg

References

  1. Зайцева А.К., Карпушев А.В., Жоров Б.С. и Костарева А.А. 2019. Биофизические механизмы натриевых каналопатий в миокарде: cиндром удлиненного интервала QT. Российский физиол. ж. им. И. М. Сеченова. Т. 105. № 1. С. 3. (Zaytseva A.K., Karpushev A.V., Zhorov B.S., Kostareva A.A. 2019. Biophysical mechanisms of sodium channelopathies in myocardium: long QT syndrome and Brugada syndrome. Russian J. Physiol. V. 105. № 1. P. 3.)
  2. Adelman W.J., Jr., Palti Y. 1969. The effects of external potassium and long duration voltage conditioning on the amplitude of sodium currents in the giant axon of the squid, Loligo pealei. J. Gen. Physiol. V. 54. P. 589. https://doi.org/10.1085/jgp.54.5.589
  3. Akai J., Makita N., Sakurada H., Shirai N., Ueda K., Kitabatake A., Nakazawa K., Kimura A., Hiraoka M. 2000. A novel SCN5A mutation associated with idiopathic ventricular fibrillation without typical ECG findings of Brugada syndrome. FEBS Lett. V. 479. P. 29.
  4. Amin A.S., Asghari-Roodsari A, Tan H.L. 2010. Cardiac sodium channelopathies. Pflugers Arch. V. 460. P. 223. https://doi.org/10.1007/s00424-009-0761-0
  5. Balser J.R., Nuss H.B., Chiamvimonvat N., Pérez-García M.T., Marban E., Tomaselli G.F. 1996. External pore residue mediates slow inactivation in mu 1 rat skeletal muscle sodium channels. J. Physiol. V. 494. P. 431.
  6. Bénitah J.P., Ranjan R., Yamagishi T., Janecki M., Tomaselli G.F., Marban E. 1997. Molecular motions within the pore of voltage-dependent sodium channels. Biophys. J. V. 73. P. 603.
  7. Bénitah J.P., Tomaselli G.F. and Marban E. 1996. Adjacent pore-lining residues within sodium channels identified by paired cysteine mutagenesis. Proc. Natl .Acad. Sci. USA. V. 93. P. 7392.
  8. Burridge P.W., Matsa E., Shukla P., Lin Z.C., Churko J.M., Ebert A.D., Lan F., Diecke S., Huber B., Mordwinkin N.M., Plews J.R., Abilez O.J., Cui B., Gold J.D., Wu J.C. 2014. Chemically defined generation of human cardiomyocytes. Nat. Methods. V. 11. P. 855. https://doi.org/10.1038/nmeth.2999
  9. Capes D.L., Goldschen-Ohm M.P., Arcisio-Miranda M., Bezanilla F. and Chanda B. 2013. Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels. J. Gen. Physiol. V. 142. P. 101.
  10. Crasto S., Di Pasquale E. 2018. Induced Pluripotent Stem Cells to Study Mechanisms of Laminopathies: Focus on Epigenetics. Front. Cell Dev. Biol. V. 6. P. 172. https://doi.org/10.3389/fcell.2018.00172
  11. Dharmawan T., Nakajima T., Iizuka T., Tamura S., Matsui H., Kaneko Y., Kurabayashi M. 2019. Enhanced closed-state inactivation of mutant cardiac sodium channels (SCN5A N1541D and R1632C) through different mechanisms. J. Mol. Cell Cardiol. V. 130. P. 88. https://doi.org/10.1016/j.yjmcc.2019.03.023
  12. El-Battrawy I., Müller J., Zhao Z., Cyganek L., Zhong R., Zhang F., Kleinsorge M., Lan H., Li X., Xu Q., Huang M., Liao Z., Moscu-Gregor A., Albers S., Dinkel H., et al. 2019. Studying Brugada Syndrome with an SCN1B variants in human-induced pluripotent stem cell-derived cardiomyocytes. Front. Cell Dev. Biol. V. 7. P. 261. https://doi.org/10.3389/fcell.2019.00261
  13. Emery A.E., Dreifuss F.E. 1966. Unusual type of benign x-linked muscular dystrophy. J. Neurol. Neurosurg. Psychiatry. V. 29. P. 338. https://doi.org/10.1136/jnnp.29.4.338
  14. Giacomelli E., Meraviglia V., Campostrini G., Cochrane A., Cao X., van Helden R.W.J., Krotenberg Garcia A., Mircea M., Kostidis S., Davis R.P., van Meer B.J., Jost C.R., Koster A.J., Mei H., Míguez D.G., et al. 2020. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease. Cell Stem Cell. V. 26. P. 862. https://doi.org/10.1016/j.stem.2020.05.004
  15. Gusev K., Khudiakov A., Zaytseva A., Perepelina K., Makeenok S., Kaznacheyeva E. and Kostareva A. 2020. Impact of the DSP-H1684R genetic variant on ion channels activity in ipsc-derived cardiomyocytes. Cell Physiol. Biochem. V. 54. P. 696. https://doi.org/10.33594/000000249
  16. Hodgkin A.L., Huxley A.F. 1952a. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. V. 116. P. 449. https://doi.org/10.1113/jphysiol.1952.sp004717
  17. Hodgkin A.L., and Huxley A.F. 1952b. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. V. 116. P. 497.
  18. Hodgkin A.L., Huxley A.F. 1952c. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. V. 117. P. 500. https://doi.org/10.1113/jphysiol.1952.sp004764
  19. Hoogendijk M.G., Potse M., Linnenbank A.C., Verkerk A.O., den Ruijter H.M., van Amersfoorth S.C., Klaver E.C., Beekman L., Bezzina C.R., Postema P.G., Tan H.L., Reimer A.G., van der Wal A.C., Ten Harkel A.D., Dalinghaus M., et al. 2010. Mechanism of right precordial ST-segment elevation in structural heart disease: excitation failure by current-to-load mismatch. Heart Rhythm. V. 7. P. 238. https://doi.org/10.1016/j.hrthm.2009.10.007
  20. Itoh H., Shimizu M., Takata S., Mabuchi H. and Imoto K. 2005. A novel missense mutation in the SCN5A gene associated with Brugada syndrome bidirectionally affecting blocking actions of antiarrhythmic drugs. J. Cardiovasc. Electrophysiol. V. 16. P. 486.
  21. Itoh H., Tsuji K., Sakaguchi T., Nagaoka I., Oka Y., Nakazawa Y., Yao T., Jo H., Ashihara T., Ito M., Horie M., Imoto K. 2007. A paradoxical effect of lidocaine for the N406S mutation of SCN5A associated with Brugada syndrome. Int. J. Cardiol. V. 121. P. 239. https://doi.org/10.1016/j.ijcard.2007.02.007
  22. Kamga M.V.K., Reppel M., Hescheler J., Nguemo F. 2021. Modeling genetic cardiac channelopathies using induced pluripotent stem cells — status quo from an electrophysiological perspective. Biochem. Pharmacol. V. 192. Р. 114746. https://doi.org/10.1016/j.bcp.2021.114746
  23. Karakikes I., Ameen M., Termglinchan V., Wu J.C. 2015. Human induced pluripotent stem cell-derived cardiomyocytes: insights into molecular, cellular, and functional phenotypes. Circ. Res. V. 117. P. 80. https://doi.org/10.1161/circresaha.117.305365
  24. Khudiakov A., Kostina D., Zlotina A., Yany N., Sergushichev A., Pervunina T., Tomilin A., Kostareva A., Malashicheva A. 2017. Generation of iPSC line from patient with arrhythmogenic right ventricular cardiomyopathy carrying mutations in PKP2 gene. Stem Cell Res. V. 24. P. 85. https://doi.org/10.1016/j.scr.2017.08.014
  25. Khudiakov A., Zaytseva A., Perepelina K., Smolina N., Pervunina T., Vasichkina E., Karpushev A., Tomilin A., Malashicheva A., Kostareva A. 2020. Sodium current abnormalities and deregulation of Wnt/β-catenin signaling in iPSC-derived cardiomyocytes generated from patient with arrhythmogenic cardiomyopathy harboring compound genetic variants in plakophilin 2 gene. Biochim. Biophys. Acta Mol. Basis Dis. V. 1866. P. 165915. https://doi.org/10.1016/j.bbadis.2020.165915
  26. Kodama M., Furutani K., Kimura R., Ando T., Sakamoto K., Nagamori S., Ashihara T., Kurachi Y., Sekino Y., Furukawa T., Kanda Y., Kurokawa J. 2019. Systematic expression analysis of genes related to generation of action potentials in human iPS cell-derived cardiomyocytes. J. Pharmacol .Sci. V. 140. P. 325. https://doi.org/10.1016/j.jphs.2019.06.006
  27. Nijak A., Saenen J., Labro A.J., Schepers D., Loeys B.L, Alaerts M. 2021. iPSC-cardiomyocyte models of brugada syndrome-achievements, challenges and future perspectives. Int. J. Mol. Sci. V. 22. P. 2825. https://doi.org/10.3390/ijms22062825
  28. Muravyev A., Vershinina T., Tesner P., Sjoberg G., Fomicheva Y., Čajbiková N.N., Kozyreva A., Zhuk S., Mamaeva E., Tarnovskaya S., Jornholt J., Sokolnikova P., Pervunina T., Vasichkina E., Sejersen T,. et al. 2022. Rare clinical phenotype of filaminopathy presenting as restrictive cardiomyopathy and myopathy in childhood. Orphanet J. Rare Dis. V. 17. P. 358. https://doi.org/10.1186/s13023-022-02477-5
  29. Palti Y., Adelman W.J., Jr. 1969. Measurement of axonal membrane conductances and capacity by means of a varying potential control voltage clamp. J. Membr. Biol. V. 1. P. 431. https://doi.org/10.1007/bf01869791
  30. Payandeh J., Gamal El-Din T.M., Scheuer T., Zheng N. and Catterall W.A. 2012. Crystal structure of a voltage-gated sodium channel in two potentially inactivated states. Nature. V. 486. P. 135.
  31. Perepelina K., Kostina A., Klauzen P., Khudiakov A., Rabino M., Crasto S., Zlotina A., Fomicheva Y., Sergushichev A., Oganesian M., Dmitriev A., Kostareva A., Di Pasquale E., Malashicheva A. 2020. Generation of two iPSC lines (FAMRCi007-A and FAMRCi007-B) from patient with Emery-Dreifuss muscular dystrophy and heart rhythm abnormalities carrying genetic variant LMNA p.Arg249Gln. Stem Cell Res. V. 47. P. 101895. https://doi.org/10.1016/j.scr.2020.101895
  32. Perepelina K., Zaytseva A., Khudiakov A., Neganova I., Vasichkina E., Malashicheva A. and Kostareva A. 2022. LMNA mutation leads to cardiac sodium channel dysfunction in the Emery-Dreifuss muscular dystrophy patient. Front. Cardiovasc. Med. V. 9. P. 932956. https://doi.org/10.3389/fcvm.2022.932956
  33. Poulin H., Mercier A., Djemai M., Pouliot V., Deschenes I., Boutjdir M., Puymirat J., Chahine M. 2021. iPSC-derived cardiomyocytes from patients with myotonic dystrophy type 1 have abnormal ion channel functions and slower conduction velocities. Sci Rep. V. 11. P. 2500. https://doi.org/10.1038/s41598-021-82007-8
  34. Raffaele Di Barletta M., Ricci E., Galluzzi G., Tonali P., Mora M., Morandi L., Romorini A., Voit T., Orstavik K.H., Merlini L., Trevisan C., Biancalana V., Housmanowa-Petrusewicz I., Bione S., Ricotti R., et al. 2000. Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am. J. Hum. Genet. V. 66. P. 1407. https://doi.org/10.1086/302869
  35. Richmond J.E., Featherstone D.E., Hartmann H.A., Ruben P.C. 1998. Slow inactivation in
  36. Rodina N., Khudiakov A., Perepelina K., Muravyev A., Boytsov A., Zlotina A., Sokolnikova P., Kostareva A. 2021. Generation of iPSC line (FAMRCi009-A) from patient with familial progressive cardiac conduction disorder carrying genetic variant FLNC p.Val2264Met. Stem Cell Res. V. 59. P. 102640. https://doi.org/10.1016/j.scr.2021.102640
  37. Rohl C.A., Boeckman F.A., Baker C., Scheuer T., Catterall W.A., Klevit R.E. 1999. Solution structure of the sodium channel inactivation gate. Biochemistry. V. 38. P. 855. https://doi.org/10.1021/bi9823380
  38. Rudy B. 1975. Proceedings: slow recovery of the inactivation of sodium conductance in Myxicola giant axons. J. Physiol. V. 249. P. 22.
  39. Rudy B. 1981. Inactivation in Myxicola giant axons responsible for slow and accumulative adaptation phenomena. J. Physiol. V. 312. P. 531.
  40. Sanner K., Mueller-Leisse J., Zormpas C., Duncker D., Leffler A. and Veltmann C. 2021. A Novel SCN5A Variant causes temperature-sensitive loss of function in a family with symptomatic Brugada syndrome, cardiac conduction disease, and sick sinus syndrome. Cardiol. V. 146. P. 754. https://doi.org/10.1159/000518210
  41. Sato C., Sato M., Iwasaki A., Doi T. and Engel A. 1998. The sodium channel has four domains surrounding a central pore. J. Struct. Biol. V. 121. P. 314.
  42. Sendfeld F., Selga E., Scornik F.S., Pérez G.J., Mills N.L., Brugada R. 2019. Experimental models of Brugada syndrome. Int. J. Mol. Sci. V. 20. P. 2123. https://doi.org/10.3390/ijms20092123
  43. Shah P.P., Lv W., Rhoades J.H., Poleshko A., Abbey D., Caporizzo M.A., Linares-Saldana R., Heffler J.G., Sayed N., Thomas D., Wang Q., Stanton L.J., Bedi K., Morley M.P., Cappola T.P,. et al. 2021. Pathogenic LMNA variants disrupt cardiac lamina-chromatin interactions and de-repress alternative fate genes. Cell Stem Cell. V. 28. P. 938. https://doi.org/10.1016/j.stem.2020.12.016
  44. Shy D., Gillet L, Abriel H. 2013. Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: the multiple pool model. Biochim. Biophys. Acta. V. 1833. P. 886. https://doi.org/10.1016/j.bbamcr.2012.10.026
  45. Steele-Stallard H.B., Pinton L., Sarcar S., Ozdemir T., Maffioletti S.M., Zammit P.S., Tedesco F.S. 2018. Modeling Skeletal muscle laminopathies using human induced pluripotent stem cells carrying pathogenic LMNA mutations. Front. Physiol. V. 9. P. 1332. https://doi.org/10.3389/fphys.2018.01332
  46. Tohyama S., Hattori F., Sano M., Hishiki T., Nagahata Y., Matsuura T., Hashimoto H., Suzuki T., Yamashita H., Satoh Y., Egashira T., Seki T., Muraoka N., Yamakawa H., Ohgino Y., et al. 2013. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. V. 12. P. 127. https://doi.org/10.1016/j.stem.2012.09.013
  47. Vilin Y.Y., Ruben P.C. 2001. Slow inactivation in voltage-gated sodium channels: molecular substrates and contributions to channelopathies. Cell Biochem. Biophys. V. 35. P. 171. https://doi.org/10.1385/cbb:35:2:171
  48. Wang D.W., Viswanathan P.C., Balser J.R., George A.L., Jr. and Benson D.W. 2002. Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation. V. 105. P. 341.
  49. Yan Z., Zhou Q., Wang L., Wu J., Zhao Y., Huang G., Peng W., Shen H., Lei J. and Yan N. 2017. Structure of the Na(v)1.4-β1 Complex from Electric Eel. Cell. V. 170. P. 470.
  50. Yang P., Kanki H., Drolet B., Yang T., Wei J., Viswanathan P.C., Hohnloser S.H., Shimizu W., Schwartz P.J., Stanton M., Murray K.T., Norris K., George A.L., Jr., Roden D.M. 2002. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation. V. 105. P. 1943. https://doi.org/10.1161/01.cir.0000014448.19052.4c
  51. Zaytseva A.K., Karpushev A.V., Kiselev A.M., Mikhaylov E.N., Lebedev D.S., Zhorov B.S., Kostareva A.A. 2019. Characterization of a novel SCN5A genetic variant A1294G associated with mixed clinical phenotype. Biochem. Biophys. Res. Commun. V. 516. P. 777.
  52. Zaytseva A.K., Kiselev A.M., Boitsov A.S., Fomicheva Y.V., Pavlov G.S., Zhorov B.S., Kostareva A.A. 2022. Characterization of the novel heterozygous SCN5A genetic variant Y739D associated with Brugada syndrome. Biochem. Biophys. Rep. V. 30. P. 101249. https://doi.org/10.1016/j.bbrep.2022.101249
  53. Zhang X., Ren W., DeCaen P., Yan C., Tao X., Tang L., Wang J., Hasegawa K., Kumasaka T., He J., Wang J., Clapham D.E., Yan N. 2012. Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel. Nature. V. 486. P. 130.
  54. Zhu Y., Wang L., Cui C., Qin H., Chen H., Chen S., Lin Y., Cheng H., Jiang X., Chen M. 2021. Pathogenesis and drug response of iPSC-derived cardiomyocytes from two Brugada syndrome patients with different Na (v)1.5-subunit mutations. J. Biomed. Res. V. 35. P. 395. https://doi.org/10.7555/jbr.35.20210045

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Representative recordings of sodium currents registered in cells of the CM-IPSC model obtained from patients with hereditary heart pathology and healthy donors (donors 1, 2, 3). All represented lines generated INa of typical morphology

Download (408KB)
3. Fig. 2. Enhancement of steady-state slow inactivation on the CM-IPSC model of a patient with progressive cardiac conduction disturbance and marked ventricular rhythm disturbances (DSP-H1684R, lower curve, n = 5) compared to the data obtained on cardiomyocytes from a healthy donor (upper curve, n = 9). * - differences are reliable at p < 0.05 (Mann-Whitney test). Here and in Figs. 3, 4 show mean values and their standard errors

Download (187KB)
4. Fig. 3. Slow inactivation of Nav1.5 in BM-IPSCs derived from patients with Emery-Dreyfus dystrophy (LMNA-R249Q mutation, upper curve, n = 9) and in cells derived from a healthy donor (lower curve, n = 12). No changes in steady-state slow inactivation kinetics were detected at potentials from -80 to 20 mV (Mann-Whitney criterion)

Download (174KB)
5. Fig. 4. Steady-state slow inactivation kinetics of Nav1.5 in cardiomyocytes of a patient with R1267Q mutation in the FLNC gene, V2264M mutation in the FLNC gene, and in cells from a healthy donor. The R1267Q mutation associated with a mixed phenotype (arrhythmogenic cardiomyopathy with severe ventricular arrhythmias) significantly altered the proportion of slowly inactivated channels (n = 6) compared with the current characteristics recorded in healthy donor cells (n = 12) at potentials ranging from -10 to 20 mV. The V2264M mutation in the FLNC gene associated with a mixed phenotype (restrictive cardiomyopathy, atrioventricular block, and ventricular tachycardia) did not alter the proportion of slowly inactivated channels (n = 7) relative to healthy donor cells. * - differences in the values of normalized current relative to healthy donors are reliable at p < 0.05 after correction (Mann-Whitney test with subsequent correction for multiple comparisons using the Benjamin-Hochberg method)

Download (196KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies