Structural and Functional Features of Bacterial SMC Complexes

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

SMC complexes (Structural maintenance of chromosomes) are key participants in the spatial organization of DNA in all living organisms – in bacteria, archaea and eukaryotes. In bacteria, there are several homologues of SMC complexes that perform seemingly unrelated functions, but function through very similar, highly conserved mechanisms. In recent years, it has been established that SMC complexes are capable of forming loops from DNA (through the so-called loop extrusion), which allows them to be considered as a separate class of DNA translocases. This paper discusses bacterial SMC complexes in comparison with their homologues such as MukBEF, MksBEF, RecN, and Wadjet, as well as with eukaryotic SMC complexes. Their properties, role and functions in the key processes of the bacterial cell are discussed.

About the authors

N. E. Morozova

Peter the Great St. Petersburg Polytechnic University, NIK “Nanobiotechnologies”,

Email: misterkotlin@gmail.com
Russia, 195251, St. Petersburg

A. S. Potysyeva

Peter the Great St. Petersburg Polytechnic University, NIK “Nanobiotechnologies”,

Email: misterkotlin@gmail.com
Russia, 195251, St. Petersburg

A. D. Vedyaykin

Peter the Great St. Petersburg Polytechnic University, NIK “Nanobiotechnologies”,

Author for correspondence.
Email: misterkotlin@gmail.com
Russia, 195251, St. Petersburg

References

  1. Alipour E., Marko J.F. 2012. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. V. 40. P. 11202.
  2. Arold S.T., Leonard P.G., Parkinson G.N., Ladbury J.E. 2010. H-NS forms a superhelical protein scaffold for DNA condensation. Proc. Natl. Acad. Sci. USA. V. 107. P. 15728.
  3. Bensaid A., Almeida A., Drlica K., Rouviere-Yaniv J. 1996. Cross-talk between topoisomerase I and HU in Escherichia coli. J. Mol. Biol. V. 256. P. 292.
  4. Bürmann F., Lee B.G., Than T., Sinn L., O’Reilly F.J., Yatskevich S., Rappsilber J., Hu B., Nasmyth K., Löwe J. 2019. A folded conformation of MukBEF and cohesin. Nat. Struct. Mol. Biol. V. 26. P. 227.
  5. Cabeen M.T., Jacobs-Wagner C. 2010. The bacterial cytoskeleton. Annu. Rev. Genet. V. 44P. 365.
  6. Chimthanawala A., Parmar J.J., Kumar S., Iyer K.S., Rao M., Badrinarayanan A. 2022. SMC protein RecN drives RecA filament translocation for in vivo homology search. Proc. Natl. Acad. Sci. V. 119. P. e2209304119.
  7. Dame R.T., Noom M.C., Wuite G.J. 2006. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature. V. 444. P. 387.
  8. Dame R.T., Rashid F.-Z.M., Grainger D.C. 2020. Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat. Rev. Genet. V. 21. P. 227.
  9. Danilova O., Reyes-Lamothe R., Pinskaya M., Sherratt D., Possoz C. 2007. MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol. Microbiol. V. 65. P. 1485.
  10. Deep A., Gu Y., Gao Y.Q., Ego K.M., Herzik M.A., Jr., Zhou H., Corbett K.D. 2022. The SMC-family Wadjet complex protects bacteria from plasmid transformation by recognition and cleavage of closed-circular DNA. Mol. Cell. V. 82. P. 4145.e7.
  11. Diebold-Durand M.L., Lee H., Ruiz Avila L.B., Noh H., Shin H.C., Im H., Bock F.P., Bürmann F., Durand A., Basfeld A., Ham S., Basquin J., Oh B.H., Gruber S. 2017. Structure of full-length SMC and rearrangements required for chromosome organization. Mol. Cell. V. 67. P. 334.e5.
  12. Eltsov M., MacLellan K.M., Maeshima K., Frangakis A.S., Dubochet J. 2008. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc. Natl. Acad. Sci. V. 105). P. 19 732.
  13. Ganji M., Shaltiel I.A., Bisht S., Kim E., Kalichava A., Haering C.H., Dekker C. 2018. Real-time imaging of DNA loop extrusion by condensin. Science. V. 360. P. 102.
  14. Georgatos S.D., Markaki Y., Christogianni A., Politou A.S. 2009. Chromatin remodeling during mitosis: a structure-based code? Front. Biosci (Landmark Ed). V. 14. P. 2017.
  15. Gibcus J.H., Samejima K., Goloborodko A., Samejima I., Naumova N., Nuebler J., Kanemaki M.T., Xie L., Paulson J.R., Earnshaw W.C., Mirny L.A., Dekker J. 2018. A pathway for mitotic chromosome formation. Science. V. 359: eaao6135.
  16. Gligoris T.G., Scheinost J.C., Bürmann F., Petela N., Chan K.L., Uluocak P., Beckouët F., Gruber S., Nasmyth K., Löwe J. 2014. Closing the cohesin ring: Structure and function of its Smc3-kleisin interface. Science. V. 346. P. 963.
  17. Gordon B.R., Li Y., Cote A., Weirauch M.T., Ding P., Hughes T.R., Navarre W.W., Xia B., Liu J. 2011. Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. Proc. Natl. Acad. Sci. USA. V. 108. P. 10 690.
  18. Grainger D.C. 2016. Structure and function of bacterial H-NS protein. Biochem. Soc. Trans. V. 44. P. 1561.
  19. Grove A. 2011. Functional evolution of bacterial histone-like HU proteins. Curr. Issues Mol. Biol. V. 13. P. 1.
  20. Gruber S., Errington J. 2009. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell. V. 137. P. 685.
  21. Gruber S., Haering C.H., Nasmyth K. 2003. Chromosomal cohesin forms a ring. Cell. V. 112. P. 765.
  22. Gutierrez-Escribano P., Newton M.D., Llauró A., Huber J., Tanasie L., Davy J., Aly I., Aramayo R., Montoya A., Kramer H., Stigler J., Rueda D. S., Aragon L. 2019. A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. Sci. Adv. V. 5: eaay6804.
  23. Haering C.H., Farcas A.-M., Arumugam P., Metson J., Nasmyth K. 2008. The cohesin ring concatenates sister DNA molecules. Nature. V. 454. P. 297.
  24. Hancock S.P., Stella S., Cascio D., Johnson R.C. 2016. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis. PLoS One. V. 11: e0150189.
  25. Hirano T. 2002. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev. V. 16. P. 399.
  26. Hirota T., Gerlich D., Koch B., Ellenberg J., Peters J.M. 2004. Distinct functions of condensin I and II in mitotic chromosome assembly. J. Cell Sci. V. 117. P. 6435.
  27. Hons M.T., Huis In’t Veld P.J., Kaesler J., Rombaut P., Schleiffer A., Herzog F., Stark H., Peters J. M. 2016. Topology and structure of an engineered human cohesin complex bound to Pds5B. Nat Commun. V. 7P: 12523.
  28. Hutchison C.A., Chuang R.-Y., Noskov V.N., Assad-Garcia N., Deerinck T.J., Ellisman M.H., Gill J., Kannan K., Karas B.J., Ma L., Pelletier J.F., Qi Z.-Q., Richter R.A., Strychalski E.A., Sun L., et al. 2016. Design and synthesis of a minimal bacterial genome. Science. V. 351: aad6253.
  29. Ishiguro K.I. 2019. The cohesin complex in mammalian meiosis. Genes Cells. V. 24. P. 6.
  30. Japaridze A., van Wee R., Gogou C., Kerssemakers J.W.J., van den Berg D.F., Dekker C. 2023. MukBEF-dependent chromosomal organization in widened Escherichia coli. Front. Microbiol. V. 14P: 1107093.
  31. Keyamura K., Sakaguchi C., Kubota Y., Niki H., Hishida T. 2013. RecA protein recruits structural maintenance of chromosomes (SMC)-like RecN protein to DNA double-strand breaks. J. Biol. Chem. V. 288. P. 29229.
  32. Kim E., Barth R., Dekker C. 2023. Looping the genome with SMC complexes. Annu. Rev. Biochem. V. 92. P. 15.
  33. Kim E., Kerssemakers J., Shaltiel I.A., Haering C.H., Dekker C. 2020. DNA-loop extruding condensin complexes can traverse one another. Nature. V. 579. P. 438.
  34. Lammens A., Schele A., Hopfner K.P. 2004. Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr. Biol. V. 14. P. 1778.
  35. Larionov V.L., Karpova T.S., Kouprina N.Y., Jouravleva G.A. 1985. A mutant of Saccharomyces cerevisiae with impaired maintenance of centromeric plasmids. Curr. Genet. V. 10. P. 15.
  36. Lesterlin C., Ball G., Schermelleh L., Sherratt D.J. 2014. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature. V. 506. P. 249.
  37. Liu H.W., Roisné-Hamelin F., Beckert B., Li Y., Myasnikov A., Gruber S. 2022. DNA-measuring Wadjet SMC ATPases restrict smaller circular plasmids by DNA cleavage. Mol. Cell. V. 82. P. 4727.e6.
  38. Mäkelä J., Sherratt D.J. 2020. Organization of the Escherichia coli chromosome by a MukBEF axial core. Mol. Cell. V. 78. P. 250.e5.
  39. McLean E.K., Lenhart J.S., Simmons L.A. 2021. RecA is required for the assembly of RecN into DNA repair complexes on the nucleoid. J. Bacteriol. V. 203: e0024021.
  40. Minnen A., Attaiech L., Thon M., Gruber S., Veening J.W. 2011. SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae. Mol. Microbiol. V. 81. P. 676.
  41. Minnen A., Bürmann F., Wilhelm L., Anchimiuk A., Diebold-Durand M.L., Gruber S. 2016. Control of Smc coiled coil architecture by the ATPase heads facilitates targeting to chromosomal ParB/parS and release onto flanking DNA. Cell Rep. V. 14. P. 2003.
  42. Murayama Y., Samora C.P., Kurokawa Y., Iwasaki H., Uhlmann F. 2018. Establishment of DNA-DNA interactions by the cohesin ring. Cell. V. 172. P. 465.e15.
  43. Nasmyth K. 2001. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. V. 35. P. 673.
  44. Nolivos S., Sherratt D. 2014. The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol. Rev. V. 38. P. 380.
  45. Nolivos S., Upton A.L., Badrinarayanan A., Muller J., Zawadzka K., Wiktor J., Gill A., Arciszewska L., Nicolas E., Sherratt D. 2016. MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation. Nat. Commun. V. 7: 10466.
  46. Olins A.L., Olins D.E. 1974. Spheroid chromatin units (v bodies). Science. V. 183. P. 330.
  47. Ou H.D., Phan S., Deerinck T.J., Thor A., Ellisman M.H., O’Shea C.C. 2017. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science. V. 357: eaag0025.
  48. Palecek J.J., Gruber S. 2015. Kite proteins: a superfamily of SMC/Kleisin partners conserved across Bacteria, Archaea, and Eukaryotes. Structure. V. 23. P. 2183.
  49. Pellegrino S., Radzimanowski J., de Sanctis D., Boeri Erba E., McSweeney S., Timmins J. 2012. Structural and functional characterization of an SMC-like protein RecN: new insights into double-strand break repair. Structure. V. 20. P. 2076.
  50. Petrushenko Z.M., She W., Rybenkov V.V. 2011. A new family of bacterial condensins. Mo. Microbiol. V. 81. P. 881.
  51. Pradhan B., Kanno T., Umeda Igarashi M., Loke M.S., Baaske M.D., Wong J.S.K., Jeppsson K., Björkegren C., Kim E. 2023. The Smc5/6 complex is a DNA loop-extruding motor. Nature. V. 616. P. 843.
  52. Rice P.A., Yang S., Mizuuchi K., Nash H.A. 1996. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell. V. 87. P. 1295.
  53. Riggs A.D. 1990. DNA methylation and late replication probably aid cell memory, and type I DNA reeling could aid chromosome folding and enhancer function. Philos. Trans. R. Soc. Lond. B Biol. Sci. V. 326. P. 285.
  54. Rouvière-Yaniv J., Gros F. 1975. Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli. Proc. Natl. Acad. Sci. USA. V. 72. P. 3428.
  55. Sanborn A.L., Rao S.S., Huang S.C., Durand N.C., Huntley M.H., Jewett A.I., Bochkov I.D., Chinnappan D., Cutkosky A., Li J., Geeting K.P., Gnirke A., Melnikov A., McKenna D., Stamenova E.K., et al. 2015. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. USA. V. 112. P. E6456.
  56. Sanchez H., Cardenas P.P., Yoshimura S.H., Takeyasu K., Alonso J.C. 2008. Dynamic structures of Bacillus subtilis RecN-DNA complexes. Nucleic Acids Res. V. 36. P. 110.
  57. Schleiffer A., Kaitna S., Maurer-Stroh S., Glotzer M., Nasmyth K., Eisenhaber F. 2003. Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol. Cell. V. 11. P. 571.
  58. Schneider R., Lurz R., Lüder G., Tolksdorf C., Travers A., Muskhelishvili G. 2001. An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. Nucleic Acids Res. V. 29. P. 5107.
  59. Schwartz M.A., Shapiro L. 2011. An SMC ATPase mutant disrupts chromosome segregation in Caulobacter. Mol. Microbiol. V. 82. P. 1359.
  60. Shintomi K., Inoue F., Watanabe H., Ohsumi K., Ohsugi M., Hirano T. 2017. Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts. Science. V. 356. P. 1284.
  61. Smits W.K., Grossman A.D. 2010. The transcriptional regulator Rok binds A+T-rich DNA and is involved in repression of a mobile genetic element in Bacillus subtilis. PLoS Genet. V. 6: e1001207.
  62. Srinivasan M., Fumasoni M., Petela N.J., Murray A., Nasmyth K.A. 2020. Cohesion is established during DNA replication utilising chromosome associated cohesin rings as well as those loaded de novo onto nascent DNAs. Elife. V. 9: e56611.
  63. Stella S., Cascio D., Johnson R.C. 2010. The shape of the DNA minor groove directs binding by the DNA-bending protein Fis. Genes Dev. V. 24. P. 814.
  64. Stojkova P., Spidlova P., Stulik J. 2019. Nucleoid-associated protein HU: A lilliputian in gene regulation of bacterial nirulence. Fron. Cell. Infect. Microbiol. V. 9: 159.
  65. Strunnikov A.V., Larionov V.L., Koshland D. 1993. SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J. Cell Biol. V. 123. P. 1635.
  66. Sutani T., Yanagida M. 1997. DNA renaturation activity of the SMC complex implicated in chromosome condensation. Nature. V. 388. P. 798.
  67. Swinger K.K., Rice P.A. 2007. Structure-based analysis of HU-DNA binding. J. Mol. Biol. V. 365. P. 1005.
  68. Tran N.T., Laub M.T., Le T.B.K. 2017. SMC progressively aligns chromosomal arms in Caulobacter crescentus but is antagonized by convergent transcription. Cell Rep. V. 20. P. 2057.
  69. Uranga L.A., Reyes E.D., Patidar P.L., Redman L.N., Lusetti S.L. 2017. The cohesin-like RecN protein stimulates RecA-mediated recombinational repair of DNA double-strand breaks. Nat. Commun. V. 8: 15282.
  70. van Noort J., Verbrugge S., Goosen N., Dekker C., Dame R.T. 2004. Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc. Natl. Acad. Sci. USA. V. 101. P. 6969.
  71. Wang X., Brandão H.B., Le T.B., Laub M.T., Rudner D.Z. 2017. Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science. V. 355. P. 524.
  72. Wang X., Hughes A.C., Brandão H.B., Walker B., Lierz C., Cochran J.C., Oakley M.G., Kruse A.C., Rudner D.Z. 2018. In vivo evidence for ATPase-dependent DNA translocation by the Bacillus subtilis SMC condensin complex. Mol. Cell. V. 71. P. 841.e5.
  73. Wang X., Le T.B., Lajoie B.R., Dekker J., Laub M.T., Rudner D.Z. 2015. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev. V. 29. P. 1661.
  74. Wang X., Tang O.W., Riley E.P., Rudner D.Z. 2014. The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr. Biol. V. 24. P. 287.
  75. Weiß M., Giacomelli G., Assaya Mathilde B., Grundt F., Haouz A., Peng F., Petrella S., Wehenkel Anne M., Bramkamp M. 2023. The MksG nuclease is the executing part of the bacterial plasmid defense system MksBEFG. Nucleic Acids Res. V. 51. P. 3288.
  76. Wells J.N., Gligoris T.G., Nasmyth K.A., Marsh J.A. 2017. Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins. Curr. Biol. V. 27. P. R17.
  77. Wiktor J., Gynnå A.H., Leroy P., Larsson J., Coceano G., Testa I., Elf J. 2021. RecA finds homologous DNA by reduced dimensionality search. Nature. V. 597. P. 426.
  78. Wilhelm L., Bürmann F., Minnen A., Shin H.C., Toseland C.P., Oh B.H., Gruber S. 2015. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. Elife. V. 4: e06659.
  79. Witz G., Stasiak A. 2010. DNA supercoiling and its role in DNA decatenation and unknotting. Nucleic Acids Res. V. 38. P. 2119.
  80. Xu P., Mahamid J., Dombrowski M., Baumeister W., Olins A.L., Olins D.E. 2021. Interphase epichromatin: last refuge for the 30-nm chromatin fiber? Chromosoma. V. 130. P. 91.
  81. Yatskevich S., Rhodes J., Nasmyth K. 2019. Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. V. 53. P. 445.
  82. Yoshimura S.H., Hizume K., Murakami A., Sutani T., Takeyasu K., Yanagida M. 2002. Condensin architecture and interaction with DNA: regulatory non-SMC subunits bind to the head of SMC heterodimer. Curr. Biol. V. 12. P. 508.
  83. Yoshinaga M., Inagaki Y. 2021. Ubiquity and origins of structural maintenance of chromosomes (SMC) proteins in Eukaryotes. Genome Biol. Evol. V. 13: evab256.
  84. Yu W., Herbert S., Graumann P.L., Götz F. 2010. Contribution of SMC (structural maintenance of chromosomes) and SpoIIIE to chromosome segregation in Staphylococci. J. Bacteriol. V. 192. P. 4067.
  85. Zhang N., Kuznetsov S.G., Sharan S.K., Li K., Rao P.H., Pati D. 2008. A handcuff model for the cohesin complex. J. Cell Biol. V. 183. P. 1019.
  86. Zhao H., Bhowmik B.K., Petrushenko Z.M., Rybenkov V.V. 2020. Alternating dynamics of oriC, SMC, and MksBEF in segregation of Pseudomonas aeruginosa chromosome. mSphere. V. 5: e00238-20.
  87. Zhou M. 2022. DNA sliding and loop formation by E. coli SMC complex: MukBEF. Biochem. Biophys. Rep. V. 31: 101 297.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (843KB)
3.

Download (391KB)
4.

Download (367KB)
5.

Download (737KB)

Copyright (c) 2023 Н.Е. Морозова, А.С. Потысьева, А.Д. Ведяйкин

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies