Особенности структуры и функций бактериальных комплексов SMC

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Белковые комплексы SMC (от англ. Structural maintenance of chromosomes, далее в тексте – комплексы SMC) являются ключевыми участниками пространственной организации ДНК во всех живых организмах – в бактериях, археях и эукариотах. У бактерий имеется несколько гомологов комплексов SMC, которые выполняют, на первый взгляд, несвязанные друг с другом функции, однако действуют посредством очень похожих между собой, высококонсервативных механизмов. За последние годы установлено, что комплексы SMC способны осуществлять формирование петель ДНК (посредством так называемой экструзии петель), что позволяет рассматривать их как отдельный класс ДНК-транслоказ. В данной работе обсуждаются бактериальные комплексы SMC в сравнении с их гомологами, такими как MukBEF, MksBEF, RecN и Wadjet, а также с комплексами SMC эукариот. Обсуждаются их свойства, роль и функции в ключевых процессах бактериальной клетки.

Об авторах

Н. Е. Морозова

Научно-исследовательский комплекс “Нанобиотехнологии” Санкт-Петербургского политехнического университета Петра Великого

Email: misterkotlin@gmail.com
Россия, 195251, Санкт-Петербург

А. С. Потысьева

Научно-исследовательский комплекс “Нанобиотехнологии” Санкт-Петербургского политехнического университета Петра Великого

Email: misterkotlin@gmail.com
Россия, 195251, Санкт-Петербург

А. Д. Ведяйкин

Научно-исследовательский комплекс “Нанобиотехнологии” Санкт-Петербургского политехнического университета Петра Великого

Автор, ответственный за переписку.
Email: misterkotlin@gmail.com
Россия, 195251, Санкт-Петербург

Список литературы

  1. Alipour E., Marko J.F. 2012. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res. V. 40. P. 11202.
  2. Arold S.T., Leonard P.G., Parkinson G.N., Ladbury J.E. 2010. H-NS forms a superhelical protein scaffold for DNA condensation. Proc. Natl. Acad. Sci. USA. V. 107. P. 15728.
  3. Bensaid A., Almeida A., Drlica K., Rouviere-Yaniv J. 1996. Cross-talk between topoisomerase I and HU in Escherichia coli. J. Mol. Biol. V. 256. P. 292.
  4. Bürmann F., Lee B.G., Than T., Sinn L., O’Reilly F.J., Yatskevich S., Rappsilber J., Hu B., Nasmyth K., Löwe J. 2019. A folded conformation of MukBEF and cohesin. Nat. Struct. Mol. Biol. V. 26. P. 227.
  5. Cabeen M.T., Jacobs-Wagner C. 2010. The bacterial cytoskeleton. Annu. Rev. Genet. V. 44P. 365.
  6. Chimthanawala A., Parmar J.J., Kumar S., Iyer K.S., Rao M., Badrinarayanan A. 2022. SMC protein RecN drives RecA filament translocation for in vivo homology search. Proc. Natl. Acad. Sci. V. 119. P. e2209304119.
  7. Dame R.T., Noom M.C., Wuite G.J. 2006. Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation. Nature. V. 444. P. 387.
  8. Dame R.T., Rashid F.-Z.M., Grainger D.C. 2020. Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat. Rev. Genet. V. 21. P. 227.
  9. Danilova O., Reyes-Lamothe R., Pinskaya M., Sherratt D., Possoz C. 2007. MukB colocalizes with the oriC region and is required for organization of the two Escherichia coli chromosome arms into separate cell halves. Mol. Microbiol. V. 65. P. 1485.
  10. Deep A., Gu Y., Gao Y.Q., Ego K.M., Herzik M.A., Jr., Zhou H., Corbett K.D. 2022. The SMC-family Wadjet complex protects bacteria from plasmid transformation by recognition and cleavage of closed-circular DNA. Mol. Cell. V. 82. P. 4145.e7.
  11. Diebold-Durand M.L., Lee H., Ruiz Avila L.B., Noh H., Shin H.C., Im H., Bock F.P., Bürmann F., Durand A., Basfeld A., Ham S., Basquin J., Oh B.H., Gruber S. 2017. Structure of full-length SMC and rearrangements required for chromosome organization. Mol. Cell. V. 67. P. 334.e5.
  12. Eltsov M., MacLellan K.M., Maeshima K., Frangakis A.S., Dubochet J. 2008. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc. Natl. Acad. Sci. V. 105). P. 19 732.
  13. Ganji M., Shaltiel I.A., Bisht S., Kim E., Kalichava A., Haering C.H., Dekker C. 2018. Real-time imaging of DNA loop extrusion by condensin. Science. V. 360. P. 102.
  14. Georgatos S.D., Markaki Y., Christogianni A., Politou A.S. 2009. Chromatin remodeling during mitosis: a structure-based code? Front. Biosci (Landmark Ed). V. 14. P. 2017.
  15. Gibcus J.H., Samejima K., Goloborodko A., Samejima I., Naumova N., Nuebler J., Kanemaki M.T., Xie L., Paulson J.R., Earnshaw W.C., Mirny L.A., Dekker J. 2018. A pathway for mitotic chromosome formation. Science. V. 359: eaao6135.
  16. Gligoris T.G., Scheinost J.C., Bürmann F., Petela N., Chan K.L., Uluocak P., Beckouët F., Gruber S., Nasmyth K., Löwe J. 2014. Closing the cohesin ring: Structure and function of its Smc3-kleisin interface. Science. V. 346. P. 963.
  17. Gordon B.R., Li Y., Cote A., Weirauch M.T., Ding P., Hughes T.R., Navarre W.W., Xia B., Liu J. 2011. Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins. Proc. Natl. Acad. Sci. USA. V. 108. P. 10 690.
  18. Grainger D.C. 2016. Structure and function of bacterial H-NS protein. Biochem. Soc. Trans. V. 44. P. 1561.
  19. Grove A. 2011. Functional evolution of bacterial histone-like HU proteins. Curr. Issues Mol. Biol. V. 13. P. 1.
  20. Gruber S., Errington J. 2009. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell. V. 137. P. 685.
  21. Gruber S., Haering C.H., Nasmyth K. 2003. Chromosomal cohesin forms a ring. Cell. V. 112. P. 765.
  22. Gutierrez-Escribano P., Newton M.D., Llauró A., Huber J., Tanasie L., Davy J., Aly I., Aramayo R., Montoya A., Kramer H., Stigler J., Rueda D. S., Aragon L. 2019. A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. Sci. Adv. V. 5: eaay6804.
  23. Haering C.H., Farcas A.-M., Arumugam P., Metson J., Nasmyth K. 2008. The cohesin ring concatenates sister DNA molecules. Nature. V. 454. P. 297.
  24. Hancock S.P., Stella S., Cascio D., Johnson R.C. 2016. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis. PLoS One. V. 11: e0150189.
  25. Hirano T. 2002. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev. V. 16. P. 399.
  26. Hirota T., Gerlich D., Koch B., Ellenberg J., Peters J.M. 2004. Distinct functions of condensin I and II in mitotic chromosome assembly. J. Cell Sci. V. 117. P. 6435.
  27. Hons M.T., Huis In’t Veld P.J., Kaesler J., Rombaut P., Schleiffer A., Herzog F., Stark H., Peters J. M. 2016. Topology and structure of an engineered human cohesin complex bound to Pds5B. Nat Commun. V. 7P: 12523.
  28. Hutchison C.A., Chuang R.-Y., Noskov V.N., Assad-Garcia N., Deerinck T.J., Ellisman M.H., Gill J., Kannan K., Karas B.J., Ma L., Pelletier J.F., Qi Z.-Q., Richter R.A., Strychalski E.A., Sun L., et al. 2016. Design and synthesis of a minimal bacterial genome. Science. V. 351: aad6253.
  29. Ishiguro K.I. 2019. The cohesin complex in mammalian meiosis. Genes Cells. V. 24. P. 6.
  30. Japaridze A., van Wee R., Gogou C., Kerssemakers J.W.J., van den Berg D.F., Dekker C. 2023. MukBEF-dependent chromosomal organization in widened Escherichia coli. Front. Microbiol. V. 14P: 1107093.
  31. Keyamura K., Sakaguchi C., Kubota Y., Niki H., Hishida T. 2013. RecA protein recruits structural maintenance of chromosomes (SMC)-like RecN protein to DNA double-strand breaks. J. Biol. Chem. V. 288. P. 29229.
  32. Kim E., Barth R., Dekker C. 2023. Looping the genome with SMC complexes. Annu. Rev. Biochem. V. 92. P. 15.
  33. Kim E., Kerssemakers J., Shaltiel I.A., Haering C.H., Dekker C. 2020. DNA-loop extruding condensin complexes can traverse one another. Nature. V. 579. P. 438.
  34. Lammens A., Schele A., Hopfner K.P. 2004. Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr. Biol. V. 14. P. 1778.
  35. Larionov V.L., Karpova T.S., Kouprina N.Y., Jouravleva G.A. 1985. A mutant of Saccharomyces cerevisiae with impaired maintenance of centromeric plasmids. Curr. Genet. V. 10. P. 15.
  36. Lesterlin C., Ball G., Schermelleh L., Sherratt D.J. 2014. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature. V. 506. P. 249.
  37. Liu H.W., Roisné-Hamelin F., Beckert B., Li Y., Myasnikov A., Gruber S. 2022. DNA-measuring Wadjet SMC ATPases restrict smaller circular plasmids by DNA cleavage. Mol. Cell. V. 82. P. 4727.e6.
  38. Mäkelä J., Sherratt D.J. 2020. Organization of the Escherichia coli chromosome by a MukBEF axial core. Mol. Cell. V. 78. P. 250.e5.
  39. McLean E.K., Lenhart J.S., Simmons L.A. 2021. RecA is required for the assembly of RecN into DNA repair complexes on the nucleoid. J. Bacteriol. V. 203: e0024021.
  40. Minnen A., Attaiech L., Thon M., Gruber S., Veening J.W. 2011. SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae. Mol. Microbiol. V. 81. P. 676.
  41. Minnen A., Bürmann F., Wilhelm L., Anchimiuk A., Diebold-Durand M.L., Gruber S. 2016. Control of Smc coiled coil architecture by the ATPase heads facilitates targeting to chromosomal ParB/parS and release onto flanking DNA. Cell Rep. V. 14. P. 2003.
  42. Murayama Y., Samora C.P., Kurokawa Y., Iwasaki H., Uhlmann F. 2018. Establishment of DNA-DNA interactions by the cohesin ring. Cell. V. 172. P. 465.e15.
  43. Nasmyth K. 2001. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. V. 35. P. 673.
  44. Nolivos S., Sherratt D. 2014. The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol. Rev. V. 38. P. 380.
  45. Nolivos S., Upton A.L., Badrinarayanan A., Muller J., Zawadzka K., Wiktor J., Gill A., Arciszewska L., Nicolas E., Sherratt D. 2016. MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation. Nat. Commun. V. 7: 10466.
  46. Olins A.L., Olins D.E. 1974. Spheroid chromatin units (v bodies). Science. V. 183. P. 330.
  47. Ou H.D., Phan S., Deerinck T.J., Thor A., Ellisman M.H., O’Shea C.C. 2017. ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science. V. 357: eaag0025.
  48. Palecek J.J., Gruber S. 2015. Kite proteins: a superfamily of SMC/Kleisin partners conserved across Bacteria, Archaea, and Eukaryotes. Structure. V. 23. P. 2183.
  49. Pellegrino S., Radzimanowski J., de Sanctis D., Boeri Erba E., McSweeney S., Timmins J. 2012. Structural and functional characterization of an SMC-like protein RecN: new insights into double-strand break repair. Structure. V. 20. P. 2076.
  50. Petrushenko Z.M., She W., Rybenkov V.V. 2011. A new family of bacterial condensins. Mo. Microbiol. V. 81. P. 881.
  51. Pradhan B., Kanno T., Umeda Igarashi M., Loke M.S., Baaske M.D., Wong J.S.K., Jeppsson K., Björkegren C., Kim E. 2023. The Smc5/6 complex is a DNA loop-extruding motor. Nature. V. 616. P. 843.
  52. Rice P.A., Yang S., Mizuuchi K., Nash H.A. 1996. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell. V. 87. P. 1295.
  53. Riggs A.D. 1990. DNA methylation and late replication probably aid cell memory, and type I DNA reeling could aid chromosome folding and enhancer function. Philos. Trans. R. Soc. Lond. B Biol. Sci. V. 326. P. 285.
  54. Rouvière-Yaniv J., Gros F. 1975. Characterization of a novel, low-molecular-weight DNA-binding protein from Escherichia coli. Proc. Natl. Acad. Sci. USA. V. 72. P. 3428.
  55. Sanborn A.L., Rao S.S., Huang S.C., Durand N.C., Huntley M.H., Jewett A.I., Bochkov I.D., Chinnappan D., Cutkosky A., Li J., Geeting K.P., Gnirke A., Melnikov A., McKenna D., Stamenova E.K., et al. 2015. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl. Acad. Sci. USA. V. 112. P. E6456.
  56. Sanchez H., Cardenas P.P., Yoshimura S.H., Takeyasu K., Alonso J.C. 2008. Dynamic structures of Bacillus subtilis RecN-DNA complexes. Nucleic Acids Res. V. 36. P. 110.
  57. Schleiffer A., Kaitna S., Maurer-Stroh S., Glotzer M., Nasmyth K., Eisenhaber F. 2003. Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol. Cell. V. 11. P. 571.
  58. Schneider R., Lurz R., Lüder G., Tolksdorf C., Travers A., Muskhelishvili G. 2001. An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. Nucleic Acids Res. V. 29. P. 5107.
  59. Schwartz M.A., Shapiro L. 2011. An SMC ATPase mutant disrupts chromosome segregation in Caulobacter. Mol. Microbiol. V. 82. P. 1359.
  60. Shintomi K., Inoue F., Watanabe H., Ohsumi K., Ohsugi M., Hirano T. 2017. Mitotic chromosome assembly despite nucleosome depletion in Xenopus egg extracts. Science. V. 356. P. 1284.
  61. Smits W.K., Grossman A.D. 2010. The transcriptional regulator Rok binds A+T-rich DNA and is involved in repression of a mobile genetic element in Bacillus subtilis. PLoS Genet. V. 6: e1001207.
  62. Srinivasan M., Fumasoni M., Petela N.J., Murray A., Nasmyth K.A. 2020. Cohesion is established during DNA replication utilising chromosome associated cohesin rings as well as those loaded de novo onto nascent DNAs. Elife. V. 9: e56611.
  63. Stella S., Cascio D., Johnson R.C. 2010. The shape of the DNA minor groove directs binding by the DNA-bending protein Fis. Genes Dev. V. 24. P. 814.
  64. Stojkova P., Spidlova P., Stulik J. 2019. Nucleoid-associated protein HU: A lilliputian in gene regulation of bacterial nirulence. Fron. Cell. Infect. Microbiol. V. 9: 159.
  65. Strunnikov A.V., Larionov V.L., Koshland D. 1993. SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. J. Cell Biol. V. 123. P. 1635.
  66. Sutani T., Yanagida M. 1997. DNA renaturation activity of the SMC complex implicated in chromosome condensation. Nature. V. 388. P. 798.
  67. Swinger K.K., Rice P.A. 2007. Structure-based analysis of HU-DNA binding. J. Mol. Biol. V. 365. P. 1005.
  68. Tran N.T., Laub M.T., Le T.B.K. 2017. SMC progressively aligns chromosomal arms in Caulobacter crescentus but is antagonized by convergent transcription. Cell Rep. V. 20. P. 2057.
  69. Uranga L.A., Reyes E.D., Patidar P.L., Redman L.N., Lusetti S.L. 2017. The cohesin-like RecN protein stimulates RecA-mediated recombinational repair of DNA double-strand breaks. Nat. Commun. V. 8: 15282.
  70. van Noort J., Verbrugge S., Goosen N., Dekker C., Dame R.T. 2004. Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc. Natl. Acad. Sci. USA. V. 101. P. 6969.
  71. Wang X., Brandão H.B., Le T.B., Laub M.T., Rudner D.Z. 2017. Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science. V. 355. P. 524.
  72. Wang X., Hughes A.C., Brandão H.B., Walker B., Lierz C., Cochran J.C., Oakley M.G., Kruse A.C., Rudner D.Z. 2018. In vivo evidence for ATPase-dependent DNA translocation by the Bacillus subtilis SMC condensin complex. Mol. Cell. V. 71. P. 841.e5.
  73. Wang X., Le T.B., Lajoie B.R., Dekker J., Laub M.T., Rudner D.Z. 2015. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev. V. 29. P. 1661.
  74. Wang X., Tang O.W., Riley E.P., Rudner D.Z. 2014. The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr. Biol. V. 24. P. 287.
  75. Weiß M., Giacomelli G., Assaya Mathilde B., Grundt F., Haouz A., Peng F., Petrella S., Wehenkel Anne M., Bramkamp M. 2023. The MksG nuclease is the executing part of the bacterial plasmid defense system MksBEFG. Nucleic Acids Res. V. 51. P. 3288.
  76. Wells J.N., Gligoris T.G., Nasmyth K.A., Marsh J.A. 2017. Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins. Curr. Biol. V. 27. P. R17.
  77. Wiktor J., Gynnå A.H., Leroy P., Larsson J., Coceano G., Testa I., Elf J. 2021. RecA finds homologous DNA by reduced dimensionality search. Nature. V. 597. P. 426.
  78. Wilhelm L., Bürmann F., Minnen A., Shin H.C., Toseland C.P., Oh B.H., Gruber S. 2015. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. Elife. V. 4: e06659.
  79. Witz G., Stasiak A. 2010. DNA supercoiling and its role in DNA decatenation and unknotting. Nucleic Acids Res. V. 38. P. 2119.
  80. Xu P., Mahamid J., Dombrowski M., Baumeister W., Olins A.L., Olins D.E. 2021. Interphase epichromatin: last refuge for the 30-nm chromatin fiber? Chromosoma. V. 130. P. 91.
  81. Yatskevich S., Rhodes J., Nasmyth K. 2019. Organization of chromosomal DNA by SMC complexes. Annu. Rev. Genet. V. 53. P. 445.
  82. Yoshimura S.H., Hizume K., Murakami A., Sutani T., Takeyasu K., Yanagida M. 2002. Condensin architecture and interaction with DNA: regulatory non-SMC subunits bind to the head of SMC heterodimer. Curr. Biol. V. 12. P. 508.
  83. Yoshinaga M., Inagaki Y. 2021. Ubiquity and origins of structural maintenance of chromosomes (SMC) proteins in Eukaryotes. Genome Biol. Evol. V. 13: evab256.
  84. Yu W., Herbert S., Graumann P.L., Götz F. 2010. Contribution of SMC (structural maintenance of chromosomes) and SpoIIIE to chromosome segregation in Staphylococci. J. Bacteriol. V. 192. P. 4067.
  85. Zhang N., Kuznetsov S.G., Sharan S.K., Li K., Rao P.H., Pati D. 2008. A handcuff model for the cohesin complex. J. Cell Biol. V. 183. P. 1019.
  86. Zhao H., Bhowmik B.K., Petrushenko Z.M., Rybenkov V.V. 2020. Alternating dynamics of oriC, SMC, and MksBEF in segregation of Pseudomonas aeruginosa chromosome. mSphere. V. 5: e00238-20.
  87. Zhou M. 2022. DNA sliding and loop formation by E. coli SMC complex: MukBEF. Biochem. Biophys. Rep. V. 31: 101 297.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (843KB)
3.

Скачать (391KB)
4.

Скачать (367KB)
5.

Скачать (737KB)

© Н.Е. Морозова, А.С. Потысьева, А.Д. Ведяйкин, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах