Activation of Endogenous Mesenchymal Stromal Cells as an Approach to Tissue Regeneration

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mesenchymal stromal cells (MSCs) which have a complex pro-regenerative effect on damaged tissues represent a promising resource for cell therapy for a wide range of diseases. However, transplantation of autologous or donor MSCs to a patient is associated with a number of problems, such as variability of cell properties depending on their source and cultivation conditions, a decrease in their therapeutic potential and the possibility of acquiring immunogenicity or tumorigenicity during in vitro expansion, and the invasiveness of the isolation procedure. One of the ways to avoid these problems can be the impact on endogenous MSCs by stimulating their directed migration into tissue defects, without the need for extraction from the body, in vitro cultivation and reintroduction to the patient. This review discusses approaches to activating the mobilization of MSCs from tissue niches and/or stimulating their migration to the target area, which can be considered as a safer, and possibly more effective alternative to MSC transplantation.

About the authors

O. V. Payushina

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Author for correspondence.
Email: payushina@mail.ru
Russia, 119991, Moscow

D. A. Tsomartova

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: payushina@mail.ru
Russia, 119991, Moscow

Ye. V. Chereshneva

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: payushina@mail.ru
Russia, 119991, Moscow

M. Yu. Ivanova

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: payushina@mail.ru
Russia, 119991, Moscow

T. A. Lomanovskaya

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: payushina@mail.ru
Russia, 119991, Moscow

M. S. Pavlova

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: payushina@mail.ru
Russia, 119991, Moscow

S. L. Kuznetsov

Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Email: payushina@mail.ru
Russia, 119991, Moscow

References

  1. Andrzejewska A., Lukomska B., Janowski M. 2019. Concise review: mesenchymal stem cells: from roots to boost. Stem Cells. V. 37. P. 855. https://doi.org/10.1002/stem.3016
  2. Askari A.T., Unzek S., Popovic Z.B., Goldman C.K., Forudi F., Kiedrowski M., Rovner A., Ellis S.G., Thomas J.D., DiCorleto P.E., Topol E.J., Penn M.S. 2003. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. V. 362. P. 697. https://doi.org/10.1016/S0140-6736(03)14232-8
  3. Balseanu A.T., Buga A.M., Catalin B., Wagner D.C., Boltze J., Zagrean A.M., Reymann K., Schaebitz W., Popa-Wagner A. 2014. Multimodal approaches for regenerative stroke therapies: combination of granulocyte colony-stimulating factor with bone marrow mesenchymal stem cells is not superior to G-CSF alone. Front. Aging Neurosci. V. 23. P. 130. https://doi.org/10.3389/fnagi.2014.00130
  4. Bayo J., Real A., Fiore E.J., Malvicini M., Sganga L., Bolontrade M., Andriani O., Bizama C., Fresno C., Podhajcer O., Fernandez E., Gidekel M., Mazzolini G.D., García M.G. 2016. IL-8, GRO and MCP-1 produced by hepatocellular carcinoma microenvironment determine the migratory capacity of human bone marrow-derived mesenchymal stromal cells without affecting tumor aggressiveness. Oncotarget. V. 8. P. 80235. https://doi.org/10.18632/oncotarget.10288
  5. Bradley M.J., Vicente D.A., Bograd B.A., Sanders E.M., Leonhardt C.L., Elster E.A., Davis T.A. 2017. Host responses to concurrent combined injuries in non-human primates. J. Inflamm. (Lond.). V. 14. P. 23. https://doi.org/10.1186/s12950-017-0170-7
  6. Bui K.C., Senadheera D., Wang X., Hendrickson B., Friedlich P., Lutzko C. 2010. Recovery of multipotent progenitors from the peripheral blood of patients requiring extracorporeal membrane oxygenation support. Am. J. Respir. Crit. Care Med. V. 181. P. 226. https://doi.org/10.1164/rccm.200812-1901OC
  7. Burks S.R., Nagle M.E., Bresler M.N., Kim S.J., Star R.A., Frank J.A. 2018. Mesenchymal stromal cell potency to treat acute kidney injury increased by ultrasound-activated interferon-γ/interleukin-10 axis. J. Cell. Mol. Med. V. 22. P. 6015. https://doi.org/10.1111/jcmm.13874
  8. Cai X., Yang F., Walboomers X.F., Wang Y., Jansen J.A., van den Beucken J.J.J.P., Plachokova A.S. 2018. Periodontal regeneration via chemoattractive constructs. J. Clin. Periodontol. V. 45. P. 851. https://doi.org/10.1111/jcpe.12928
  9. Calle A., Barrajón-Masa C., Gómez-Fidalgo E., Martín-Lluch M., Cruz-Vigo P., Sánchez-Sánchez R., Ramírez M.Á. 2018. Iberian pig mesenchymal stem/stromal cells from dermal skin, abdominal and subcutaneous adipose tissues, and peripheral blood: in vitro characterization and migratory properties in inflammation. Stem Cell Res. Ther. V. 9. P. 178. https://doi.org/10.1186/s13287-018-0933-y
  10. Chen P., Tao J., Zhu S., Cai Y., Mao Q., Yu D., Dai J., Ouyang H. 2015. Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials. V. 39. P. 114. https://doi.org/10.1016/j.biomaterials.2014.10.049
  11. Chen Z., Ren X., Ren R., Wang Y., Shang J. 2021. The combination of G-CSF and AMD3100 mobilizes bone marrow-derived stem cells to protect against cisplatin-induced acute kidney injury in mice. Stem Cell Res. Ther. V. 12. P. 209. https://doi.org/10.1186/s13287-021-02268-y
  12. Chuma H., Mizuta H., Kudo S., Takagi K., Hiraki Y. 2004. One day exposure to FGF-2 was sufficient for the regenerative repair of full-thickness defects of articular cartilage in rabbits. Osteoarthritis Cartilage. V. 12. P. 834. https://doi.org/10.1016/j.joca.2004.07.003
  13. Churchman S.M., Jones E.A., Roshdy T., Cox G., Boxall S.A., McGonagle D., Giannoudis P.V. 2020. Transient existence of circulating mesenchymal stem cells in the deep veins in humans following long bone intramedullary reaming. J. Clin. Med. V. 9. P. 968. https://doi.org/10.3390/jcm9040968
  14. Deng J., Zou Z.M., Zhou T.L., Su Y.P., Ai G.P., Wang J.P., Xu H., Dong S.W. 2011. Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue. Neurol. Sci. V. 32. P. 641. https://doi.org/10.1007/s10072-011-0608-2
  15. Deng M., Mei T., Hou T., Luo K., Luo F., Yang A., Yu B., Pang H., Dong S., Xu J. 2017. TGFβ3 recruits endogenous mesenchymal stem cells to initiate bone regeneration. Stem Cell Res. Ther. V. 8. P. 258. https://doi.org/10.1186/s13287-017-0693-0
  16. Dhar M., Neilsen N., Beatty K., Eaker S., Adair H., Geiser D. 2012. Equine peripheral blood-derived mesenchymal stem cells: isolation, identification, trilineage differentiation and effect of hyperbaric oxygen treatment. Equine Vet. J. V. 44. P. 600. https://doi.org/10.1111/j.2042-3306.2011.00536.x
  17. Dubon M.J., Yu J., Choi S., Park K.S. 2018. Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin. J. Cell. Physiol. V. 233. P. 201. https://doi.org/10.1002/jcp.25863
  18. Dubon M.J., Park K.S. 2016. The mechanisms of substance P-mediated migration of bone marrow-derived mesenchymal stem cell-like ST2 cells. Int. J. Mol. Med. V. 37. P. 1105. https://doi.org/10.3892/ijmm.2016.2496
  19. Dwyer R.M., Potter-Beirne S.M., Harrington K.A., Lowery A.J., Hennessy E., Murphy J.M., Barry F.P., O’Brien T., Kerin M.J. 2007. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin. Cancer. Res. V. 13. P. 5020. https://doi.org/10.1158/1078-0432.CCR-07-0731
  20. Emamnejad R., Sahraian M., Shakiba Y., Salehi Z., Masoomi A., Imani D., Najafi F., Laribi B., Shirzad H., Izad M. 2019. Circulating mesenchymal stem cells, stromal derived factor (SDF)-1 and IP-10 levels increased in clinically active multiple sclerosis patients but not in clinically stable patients treated with beta interferon. Mult. Scler. Relat. Disord. V. 35. P. 233. https://doi.org/10.1016/j.msard.2019.08.013
  21. Fan W., Yuan L., Li J., Wang Z., Chen J., Guo C., Mo X., Yan Z. 2020. Injectable double-crosslinked hydrogels with kartogenin-conjugated polyurethane nano-particles and transforming growth factor β3 for in situ cartilage regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. V. 110. P. 110705. https://doi.org/10.1016/j.msec.2020.110705
  22. Fellous T.G., Redpath A.N., Fleischer M.M., Gandhi S., Hartner S.E., Newton M.D., François M., Wong S.P., Gowers K.H.C., Fahs A.M., Possley D.R., Bonnet D., Urquhart P., Nicolaou A., Baker K.C. et al. 2020. Pharmacological tools to mobilise mesenchymal stromal cells into the blood promote bone formation after surgery. NPJ Regen. Med. V. 5. P. 3. https://doi.org/10.1038/s41536-020-0088-1
  23. Fujita K., Kuge K., Ozawa N., Sahara S., Zaiki K., Nakaoji K., Hamada K., Takenaka Y., Tanahashi T., Tamai K., Kaneda Y., Maeda A. 2015. Cinnamtannin B-1 promotes migration of mesenchymal stem cells and accelerates wound healing in mice. PLoS One. V. 10. P. e0144166. https://doi.org/10.1371/journal.pone.0144166
  24. Fujita R., Tamai K., Aikawa E., Nimura K., Ishino S., Kikuchi Y., Kaneda Y. 2015. Endogenous mesenchymal stromal cells in bone marrow are required to preserve muscle function in mdx mice. Stem Cells. V. 33. P. 962. https://doi.org/10.1002/stem.1900
  25. Furumoto T., Ozawa N., Inami Y., Toyoshima M., Fujita K., Zaiki K., Sahara S., Akita M., Kitamura K., Nakaoji K., Hamada K., Tamai K., Kaneda Y., Maeda A. 2014. Mallotus philippinensis bark extracts promote preferential migration of mesenchymal stem cells and improve wound healing in mice. Phytomedicine. V. 21. P. 247. https://doi.org/10.1016/j.phymed.2013.09.003
  26. Garcia N.P., de Leon E.B., da Costa A.G., Tarragô A.M., Pimentel J.P., Fraporti L., de Araujo F.F., Campos F.M., Teixeira-Carvalho A., Martins-Filho O.A., Malheiro A. 2015. Kinetics of mesenchymal and hematopoietic stem cells mobilization by G-CSF and its impact on the cytokine microenvironment in primary cultures. Cell. Immunol. V. 293. P. 1. https://doi.org/10.1016/j.cellimm.2014.09.006
  27. Ge T., Yu Q., Liu W., Cong L., Liu L., Wang Y., Zhou L., Lin D. 2016. Characterization of bone marrow-derived mesenchymal stem cells from dimethyloxallyl glycine-preconditioned mice: evaluation of the feasibility of dimethyloxallyl glycine as a mobilization agent. Mol. Med. Rep. V. 13. P. 3498. https://doi.org/10.3892/mmr.2016.4945
  28. Ghazanfari T., Ghaffarpour S., Kariminia A., Salehi E., Hashemi S.M., Ardestani S.K., Gohari Moghadam K., Mirsharif E.S., Dilmaghanian R., Fadaei A., Faghihzadeh S. 2019. Circulating mesenchymal stem cells in sulfur mustard-exposed patients with long-term pulmonary complications. Toxicol. Lett. V. 312. P. 188. https://doi.org/10.1016/j.toxlet.2019.05.015
  29. Gomez-Salazar M., Gonzalez-Galofre Z.N., Casamitjana J., Crisan M., James A.W., Péault B. 2020. Five decades later, are mesenchymal stem cells still relevant? Front. Bioeng. Biotechnol. V. 8. P. 148. https://doi.org/10.3389/fbioe.2020.00148
  30. Guo J., Zhang H., Xiao J., Wu J., Ye Y., Li Z., Zou Y., Li X. 2013. Monocyte chemotactic protein-1 promotes the myocardial homing of mesenchymal stem cells in dilated cardiomyopathy. Int. J. Mol. Sci. V. 14. P. 8164. https://doi.org/10.3390/ijms14048164
  31. Hannoush E.J., Sifri Z.C., Elhassan I.O., Mohr A.M., Alzate W.D., Offin M., Livingston D.H. 2011. Impact of enhanced mobilization of bone marrow derived cells to site of injury. J. Trauma. V. 71. P. 283. https://doi.org/10.1097/TA.0b013e318222f380
  32. Heino T.J., Alm J.J., Moritz N., Aro H.T. 2012. Comparison of the osteogenic capacity of minipig and human bone marrow-derived mesenchymal stem cells. J. Orthop. Res. V. 30. P. 1019. https://doi.org/10.1002/jor.22049
  33. Hong H.S., Lee J., Lee E., Kwon Y.S., Lee E., Ahn W., Jiang M.H., Kim J.C., Son Y. 2009. A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med. V. 15. P. 425. https://doi.org/10.1038/nm.1909
  34. Hong H.S., Son Y. 2014. Substance P ameliorates collagen II-induced arthritis in mice via suppression of the inflammatory response. Biochem. Biophys. Res. Commun. V. 453. P. 179. https://doi.org/10.1016/j.bbrc.2014.09.090
  35. Hoogduijn M.J., Verstegen M.M., Engela A.U., Korevaar S.S., Roemeling-van Rhijn M., Merino A., Franquesa M., de Jonge J., Ijzermans J.N., Weimar W., Betjes M.G., Baan C.C., van der Laan L.J. 2014. No evidence for circulating mesenchymal stem cells in patients with organ injury. Stem Cells Dev. V. 23. P. 2328. https://doi.org/10.1089/scd.2014.0269
  36. Hu C., Yong X., Li C., Lü M., Liu D., Chen L., Hu J., Teng M., Zhang D., Fan Y., Liang G. 2013. CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair. J. Surg. Res. V. 183. P. 427. https://doi.org/10.1016/j.jss.2013.01.019
  37. Iinuma S., Aikawa E., Tamai K., Fujita R., Kikuchi Y., Chino T., Kikuta J., McGrath J.A., Uitto J., Ishii M., Iizuka H., Kaneda Y. 2015. Transplanted bone marrow-derived circulating PDGFRα+ cells restore type VII collagen in recessive dystrophic epidermolysis bullosa mouse skin graft. J. Immunol. V. 194. P. 1996. https://doi.org/10.4049/jimmunol.1400914
  38. Ishikawa M., Ito H., Kitaori T., Murata K., Shibuya H., Furu M., Yoshitomi H., Fujii T., Yamamoto K., Matsuda S. 2014. MCP/CCR2 signaling is essential for recruitment of mesenchymal progenitor cells during the early phase of fracture healing. PLoS One. V. 9. P. e104954. https://doi.org/10.1371/journal.pone.0104954
  39. Iso Y., Yamaya S., Sato T., Poole C.N., Isoyama K., Mimura M., Koba S., Kobayashi Y., Takeyama Y., Spees J.L, Suzuki H. 2012. Distinct mobilization of circulating CD271+ mesenchymal progenitors from hematopoietic progenitors during aging and after myocardial infarction. Stem Cells Transl. Med. V. 1. P. 462. https://doi.org/10.5966/sctm.2011-0051
  40. Jang K.W., Tu T.W., Rosenblatt R.B., Burks S.R., Frank J.A. 2020. MR-guided pulsed focused ultrasound improves mesenchymal stromal cell homing to the myocardium. J. Cell. Mol. Med. V. 24. P. 13278. https://doi.org/10.1111/jcmm.15944
  41. Jin W., Liang X., Brooks A., Futrega K., Liu X., Doran M.R., Simpson M.J., Roberts M.S., Wang H. 2018. Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice. Peer J. V. 6. P. e6072. https://doi.org/10.7717/peerj.6072
  42. Kamali A., Oryan A., Hosseini S., Ghanian M.H., Alizadeh M., Baghaban Eslaminejad M., Baharvand H. 2019. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater. Sci. Eng. C Mater. Biol. Appl. V. 101. P. 64. https://doi.org/10.1016/j.msec.2019.03.070
  43. Khaldoyanidi S. 2008. Directing stem cell homing. Cell Stem Cell. V. 6. P. 198. https://doi.org/10.1016/j.stem.2008.02.012
  44. Kim J., Kim N.K., Park S.R., Choi B.H. 2018a. GM-CSF enhances mobilization of bone marrow mesenchymal stem cells via a CXCR4-medicated mechanism. Tiss. Eng. Regen. Med. V. 16. P. 59. https://doi.org/10.1007/s13770-018-0163-5
  45. Kim J.E., Lee J.H., Kim S.H., Jung Y. 2018b. Skin regeneration with self-assembled peptide hydrogels conjugated with substance P in a diabetic rat model. Tissue Eng. Part A. V. 24. P. 21. https://doi.org/10.1089/ten.TEA.2016.0517
  46. Kim K., Lee C.H., Kim B.K., Mao J.J. 2010. Anatomically shaped tooth and periodontal regeneration by cell homing. J. Dent. Res. V. 89. P. 842. https://doi.org/10.1177/0022034510370803
  47. Kim S.J., Kim J.E., Kim S.H., Kim S.J., Jeon S.J., Kim S.H., Jung Y. 2016. Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model. Biomaterials. V. 74. P. 119. https://doi.org/10.1016/j.biomaterials.2015.09.040
  48. Ko I.K., Ju Y.M., Chen T., Atala A., Yoo J.J., Lee S.J. 2012. Combined systemic and local delivery of stem cell inducing/recruiting factors for in situ tissue regeneration. FASEB J. V. 26. P. 158. https://doi.org/10.1096/fj.11-182998
  49. Koerner J., Nesic D., Romero J. D., Brehm W., Mainil–Varlet P., Grogan S.P. 2006. Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells. Stem Cells. V. 24. P. 1613. https://doi.org/10.1634/stemcells.2005-0264
  50. Krstić J., Obradović H., Jauković A., Okić-Đorđević I., Trivanović D., Kukolj T., Mojsilović S., Ilić V., Santibañez J.F., Bugarski D. 2015. Urokinase type plasminogen activator mediates Interleukin-17-induced peripheral blood mesenchymal stem cell motility and transendothelial migration. Biochim. Biophys. Acta. V. 1853. P. 431. https://doi.org/10.1016/j.bbamcr.2014.11.025
  51. Kumar S., Ponnazhagan S. 2012. Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect. Bone. V. 50. P. 1012. https://doi.org/10.1016/j.bone.2012.01.027
  52. Kuznetsov S.A., Mankani M.H., Leet A.I., Ziran N., Gronthos S., Robey P.G. 2007. Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs. Stem Cells. V. 25. P. 1830. https://doi.org/10.1634/stemcells.2007-0140
  53. Lan Y., Kodati S., Lee H.S., Omoto M., Jin Y., Chauhan S.K. 2012. Kinetics and function of mesenchymal stem cells in corneal injury. Invest. Ophthalmol. Vis. Sci. V. 53. P. 3638. https://doi.org/10.1167/iovs.11-9311
  54. Lang H.M., Schnabel L.V., Cassano J.M., Fortier L.A. 2017. Effect of needle diameter on the viability of equine bone marrow derived mesenchymal stem cells. Vet. Surg. V. 46. P. 731. https://doi.org/10.1111/vsu.12639
  55. Lee C.H., Cook J.L., Mendelson A., Moioli E.K., Yao H., Mao J.J. 2010. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. V. 376. P. 440. https://doi.org/10.1016/S0140-6736(10)60668-X
  56. Levy O., Kuai R., Siren E.M.J., Bhere D., Milton Y., Nissar N., De Biasio M., Heinelt M., Reeve B., Abdi R., Alturki M., Fallatah M., Almalik A., Alhasan A.H., Shah K. et al. 2020. Shattering barriers toward clinically meaningful MSC therapies. Sci. Adv. V. 6. P. eaba6884. https://doi.org/10.1126/sciadv.aba6884
  57. Li Y., Dong Y., Ran Y., Zhang Y., Wu B., Xie J., Cao Y., Mo M., Li S., Deng H., Hao W., Yu S., Wu Y. 2021. Three-dimensional cultured mesenchymal stem cells enhance repair of ischemic stroke through inhibition of microglia. Stem Cell Res. Ther. V. 12. P. 358. https://doi.org/10.1186/s13287-021-02416-4
  58. Lin W., Xu L., Lin S., Shi L., Wang B., Pan Q., Lee W.Y.W., Li G. 2019. Characterisation of multipotent stem cells from human peripheral blood using an improved protocol. J. Orthop. Translat. V. 19. P. 18. https://doi.org/10.1016/j.jot.2019.02.003
  59. Lin W., Xu L., Zwingenberger S., Gibon E., Goodman S.B., Li G. 2017. Mesenchymal stem cells homing to improve bone healing. J. Orthop. Translat. V. 9. P. 19. https://doi.org/10.1016/j.jot.2017.03.002
  60. Liu L., Yu Q., Fu S., Wang B., Hu K., Wang L., Hu Y., Xu Y., Yu X., Huang H. 2018. CXCR4 antagonist AMD3100 promotes mesenchymal stem cell mobilization in rats preconditioned with the hypoxia-mimicking agent cobalt chloride. Stem Cells Dev. V. 27. P. 466. https://doi.org/10.1089/scd.2017.0191
  61. Liu L., Yu Q., Hu K., Wang B., Zhang Y., Xu Y., Fu S., Yu X., Huang H. 2016. Electro-acupuncture promotes endogenous multipotential mesenchymal stem cell mobilization into the peripheral blood. Cell. Physiol. Biochem. V. 38. P. 1605. https://doi.org/10.1159/000443101
  62. Liu L., Yu Q., Lin J., Lai X., Cao W., Du K., Wang Y., Wu K., Hu Y., Zhang L., Xiao H., Duan Y., Huang H. 2011. Hypoxia-inducible factor-1α is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood. Stem Cells Dev. V. 20. P. 1961. https://doi.org/10.1089/scd.2010.0453
  63. Lorsung R.M., Rosenblatt R.B., Cohen G., Frank J.A., Burks S.R. 2020. Acoustic radiation or cavitation forces from therapeutic ultrasound generate prostaglandins and increase mesenchymal stromal cell homing to murine muscle. Front. Bioeng. Biotechnol. V. 8. P. 870. https://doi.org/10.3389/fbioe.2020.00870
  64. Maeda A. 2020. Recruitment of mesenchymal stem cells to damaged sites by plant-derived components. Front. Cell Dev. Biol. V. 8. P. 437. https://doi.org/10.3389/fcell.2020.00437
  65. Maerz T., Fleischer M., Newton M.D., Davidson A., Salisbury M., Altman P., Kurdziel M.D., Anderson K., Bedi A., Baker K.C. 2017. Acute mobilization and migration of bone marrow-derived stem cells following anterior cruciate ligament rupture. Osteoarthritis Cartilage. V. 25. P. 1335. https://doi.org/10.1016/j.joca.2017.03.004
  66. Mansilla E., Marín G.H., Drago H., Sturla F., Salas E., Gardiner C., Bossi S., Lamonega R., Guzmán A., Nuñez A., Gil M.A., Piccinelli G., Ibar R., Soratti C. 2006. Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine. Transplant. Proc. V. 38. P. 967. https://doi.org/10.1016/j.transproceed.2006.02.053
  67. Marketou M.E., Parthenakis F.I., Kalyva A., Pontikoglou C., Maragkoudakis S., Kontaraki J.E., Zacharis E.A., Patrianakos A., Chlouverakis G., Papadaki H.A., Vardas P.E. 2015. Circulating mesenchymal stem cells in patients with hypertrophic cardiomyopathy. Cardiovasc. Pathol. V. 24. P. 149. https://doi.org/10.1016/j.carpath.2015.02.005
  68. Meeson R., Sanghani-Keri A., Coathup M., Blunn G. 2019. VEGF with AMD3100 endogenously mobilizes mesenchymal stem cells and improves fracture healing. J. Orthop. Res. V. 37. P. 1294. https://doi.org/10.1002/jor.24164
  69. Mi L., Liu H., Gao Y., Miao H., Ruan J. 2017. Injectable nanoparticles/hydrogels composite as sustained release system with stromal cell-derived factor-1α for calvarial bone regeneration. Int. J. Biol. Macromol. V. 101. P. 341. https://doi.org/10.1016/j.ijbiomac.2017.03.098
  70. Nam D., Park A., Dubon M.J., Yu J., Kim W., Son Y., Park K.S. 2020. Coordinated regulation of mesenchymal stem cell migration by various chemotactic stimuli. Int. J. Mol. Sci. V. 21. P. 8561. https://doi.org/10.3390/ijms21228561
  71. Nitzsche F., Müller C., Lukomska B., Jolkkonen J., Deten A., Boltze J. 2017. Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells. V. 35. P. 1446. https://doi.org/10.1002/stem.2614
  72. Oh E.J., Lee H.W., Kalimuthu S., Kim T.J., Kim H.M., Baek S.H., Zhu L., Oh J.M., Son S.H., Chung H.Y., Ahn B.C. 2018. In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model. J. Control. Release. V. 279. P. 79. https://doi.org/10.1016/j.jconrel.2018.04.020
  73. Pan Q., Fouraschen S.M., de Ruiter P.E., Dinjens W.N., Kwekkeboom J., Tilanus H.W., van der Laan L.J. 2014. Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells. Exp. Biol. Med. (Maywood). V. 239. P. 105. https://doi.org/10.1177/1535370213506802
  74. Patry C., Doniga T., Lenz F., Viergutz T., Weiss C., Tönshoff B., Kalenka A., Yard B., Krebs J., Schaible T., Beck G., Rafat N. 2020. Increased mobilization of mesenchymal stem cells in patients with acute respiratory distress syndrome undergoing extracorporeal membrane oxygenation. PLoS One. V. 15. P. e0227460. https://doi.org/10.1371/journal.pone.0227460
  75. Patry C., Stamm D., Betzen C., Tönshoff B., Yard B.A., Beck G.C., Rafat N. 2018. CXCR-4 expression by circulating endothelial progenitor cells and SDF-1 serum levels are elevated in septic patients. J. Inflamm. (Lond.). V. 15. P. 10. https://doi.org/10.1186/s12950-018-0186-7
  76. Pavon L.F., Sibov T.T., de Souza A.V., da Cruz E.F., Malheiros S.M.F., Cabral F.R., de Souza J.G., Boufleur P., de Oliveira D.M., de Toledo S.R.C., Marti L.C., Malheiros J.M., Paiva F.F., Tannús A., de Oliveira S.M. et al. 2018. Tropism of mesenchymal stem cell toward CD133+ stem cell of glioblastoma in vitro and promote tumor proliferation in vivo. Stem Cell Res. Ther. V. 9. P. 310. https://doi.org/10.1186/s13287-018-1049-0
  77. Pereira C.L., Gonçalves R.M., Peroglio M., Pattappa G., D’Este M., Eglin D., Barbosa M.A., Alini M., Grad S. 2014. The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs. Biomaterials. V. 35. P. 8144. https://doi.org/10.1016/j.biomaterials.2014.06.017
  78. Popielarczyk T.L., Huckle W.R., Barrett J.G. 2019. Human bone marrow-derived mesenchymal stem cells home via the PI3K-Akt, MAPK, and Jak/Stat signaling pathways in response to platelet-derived growth factor. Stem Cells Dev. V. 28. P. 1191. https://doi.org/10.1089/scd.2019.0003
  79. Ries C., Egea V., Karow M., Kolb H., Jochum M., Neth P. 2007. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood. V. 109. P. 4055. https://doi.org/10.1182/blood-2006-10-051060
  80. Rochefort G.Y., Delorme B., Lopez A., Hérault O., Bonnet P., Charbord P., Eder V., Domenech J. 2006. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells. V. 24. P. 2202. https://doi.org/10.1634/stemcells.2006-0164
  81. Sackstein R., Merzaban J.S., Cain D.W., Dagia N.M., Spencer J.A., Lin C.P., Wohlgemuth R. 2008. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat. Med. V. 14. P. 181. https://doi.org/10.1038/nm1703
  82. Sasaki M., Abe R., Fujita Y., Ando S., Inokuma D., Shimizu H. 2008. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J. Immunol. V. 180. P. 2581. https://doi.org/10.4049/jimmunol.180.4.2581
  83. Sasaki T., Fukazawa R., Ogawa S., Kanno S., Nitta T., Ochi M., Shimizu K. 2007. Stromal cell-derived factor-1alpha improves infarcted heart function through angiogenesis in mice. Pediatr. Int. V. 49. P. 966. https://doi.org/10.1111/j.1442-200X.2007.02491.x
  84. Schenk S., Mal N., Finan A., Zhang M., Kiedrowski M., Popovic Z., McCarthy P.M., Penn M.S. 2007. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cells. V. 25. P. 245. https://doi.org/10.1634/stemcells.2006-0293
  85. Schmidt-Lucke C., Escher F., Van Linthout S., Kühl U., Miteva K., Ringe J., Zobel T., Schultheiss H.P., Tschöpe C. 2015. Cardiac migration of endogenous mesenchymal stromal cells in patients with inflammatory cardiomyopathy. Mediators Inflamm. V. 2015. P. 308 185. https://doi.org/10.1155/2015/308185
  86. Selma J.M., Das A., Awojoodu A.O., Wang T., Kaushik A.P., Cui Q., Song H., Ogle M.E., Olingy C.E., Pendleton E.G., Tehrani K.F., Mortensen L.J., Botchwey E.A. 2018. Novel lipid signaling mediators for mesenchymal stem cell mobilization during bone repair. Cell. Mol. Bioeng. V. 11. P. 241. https://doi.org/10.1007/s12195-018-0532-0
  87. Shao Z., Zhang X., Pi Y., Wang X., Jia Z., Zhu J., Dai L., Chen W., Yin L., Chen H., Zhou C., Ao Y. 2012. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo. Biomaterials. V. 33. P. 3375. https://doi.org/10.1016/j.biomaterials.2012.01.033
  88. Sheyn D., Shapiro G., Tawackoli W., Jun D.S., Koh Y., Kang K.B., Su S., Da X., Ben-David S., Bez M., Yalon E., Antebi B., Avalos P., Stern T., Zelzer E. et al. 2016. PTH induces systemically administered mesenchymal stem cells to migrate to and regenerate spine injuries. Mol. Ther. V. 24. P. 318. https://doi.org/10.1038/mt.2015.211
  89. Spaas J.H., De Schauwer C., Cornillie P., Meyer E., Van Soom A., Van de Walle G.R. 2013. Culture and characterisation of equine peripheral blood mesenchymal stromal cells. Vet. J. V. 195. P. 107. https://doi.org/10.1016/j.tvjl.2012.05.006
  90. Struzyna J., Pojda Z., Braun B., Chomicka M., Sobiczewska E., Wrembel J. 1995. Serum cytokine levels (IL-4, IL-6, IL-8, G-CSF, GM-CSF) in burned patients. Burns. V. 21. P. 437. https://doi.org/10.1016/0305-4179(95)00018-7
  91. Tang Y., Xia H., Kang L., Sun Q., Su Z., Hao C., Xue Y. 2019. Effects of intermittent parathyroid hormone 1-34 administration on circulating mesenchymal stem cells in postmenopausal osteoporotic women. Med. Sci. Monit. V. 25. P. 259. https://doi.org/10.12659/MSM.913752
  92. Tatsumi K., Ohashi K., Matsubara Y., Kohori A., Ohno T., Kakidachi H., Horii A., Kanegae K., Utoh R., Iwata T., Okano T. 2013. Tissue factor triggers procoagulation in transplanted mesenchymal stem cells leading to thromboembolism. Biochem. Biophys. Res. Commun. V. 431. P. 203. https://doi.org/10.1016/j.bbrc.2012.12.134
  93. Teo G.S., Ankrum J.A., Martinelli R., Boetto S.E., Simms K., Sciuto T.E., Dvorak A.M., Karp J.M., Carman C.V. 2012. Mesenchymal stem cells transmigrate between and directly through tumor necrosis factor-α-activated endothelial cells via both leukocyte-like and novel mechanisms. Stem Cells. V. 30. P. 2472. https://doi.org/10.1002/stem.1198
  94. Uder C., Brückner S., Winkler S., Tautenhahn H.M., Christ B. 2018. Mammalian MSC from selected species: Features and applications. Cytometry A. V. 93. P. 32. https://doi.org/10.1002/cyto.a.23239
  95. Ullah M., Liu D.D., Thakor A.S. 2019. Mesenchymal stromal cell homing: mechanisms and strategies for improvement. iScience. V. 15. P. 421. https://doi.org/10.1016/j.isci.2019.05.004
  96. Vanden Berg-Foels W.S. 2014. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment. Tissue Eng. Part B Rev. V. 20. P. 28. https://doi.org/10.1089/ten.TEB.2013.0100
  97. Van der Velden D.L., Houthuijzen J.M., Roodhart J.M.L., van Werkhoven E., Voest E.E. 2018. Detection of endogenously circulating mesenchymal stem cells in human cancer patients. Int. J. Cancer. V. 143. P. 2516. https://doi.org/10.1002/ijc.31727
  98. Vieira C.P., McCarrel T.M., Grant M.B. 2021. Novel methods to mobilize, isolate, and expand mesenchymal stem cells. Int. J. Mol. Sci. V. 22. P. 5728. https://doi.org/10.3390/ijms22115728
  99. Wan M., Li C., Zhen G., Jiao K., He W., Jia X., Wang W., Shi C., Xing Q., Chen Y.F., Jan De Beur S., Yu B., Cao X. 2012. Injury-activated transforming growth factor beta controls mobilization of mesenchymal stem cells for tissue remodeling. Stem Cells. V. 30. P. 2498. https://doi.org/10.1002/stem.1208
  100. Wang M., Chen F., Wang J., Chen X., Liang J., Yang X., Zhu X., Fan Y., Zhang X. 2018. Calcium phosphate altered the cytokine secretion of macrophages and influenced the homing of mesenchymal stem cells. J. Mater. Chem. B. V. 6. P. 4765. https://doi.org/10.1039/c8tb01201f
  101. Wiegner R., Rudhart N.E., Barth E., Gebhard F., Lampl L., Huber-Lang M.S., Brenner R.E. 2018. Mesenchymal stem cells in peripheral blood of severely injured patients. Eur. J. Trauma Emerg. Surg. V. 44. P. 627. https://doi.org/10.1007/s00068-017-0849-8
  102. Wu C.C., Wang I.F., Chiang P.M., Wang L.C., Shen C.J., Tsai K.J. 2017. G-CSF-mobilized bone marrow mesenchymal stem cells replenish neural lineages in Alzheimer’s disease mice via CXCR4/SDF-1 chemotaxis. Mol. Neurobiol. V. 54. P. 6198. https://doi.org/10.1007/s12035-016-0122-x
  103. Yang J.W., Zhang Y.F., Wan C.Y., Sun Z.Y., Nie S., Jian S.J., Zhang L., Song G.T., Chen Z. 2015. Autophagy in SDF-1α-mediated DPSC migration and pulp regeneration. Biomaterials. V. 44. P. 11. https://doi.org/10.1016/j.biomaterials.2014.12.006
  104. Zhang D., Jiang M., Miao D. 2011. Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS One. V. 6. P. e16789. https://doi.org/10.1371/journal.pone.0016789
  105. Zhou S.B., Wang J., Chiang C.A., Sheng L.L., Li Q.F. 2013. Mechanical stretch upregulates SDF-1α in skin tissue and induces migration of circulating bone marrow-derived stem cells into the expanded skin. Stem Cells. V. 31. P. 2703. https://doi.org/10.1002/stem.1479
  106. Zhou T., Yuan Z., Weng J., Pei D., Du X., He C., Lai P. 2021. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. V. 14. P. 24. https://doi.org/10.1186/s13045-021-01037-xa

Copyright (c) 2023 О.В. Паюшина, Д.А. Цомартова, Е.В. Черешнева, М.Ю. Иванова, Т.А. Ломановская, М.С. Павлова, С.Л. Кузнецов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies