Neurogenesis in Brain Neurogenic Niches in Experimental Alzheimer’s Disease at the Presymptomatic Stage of Neurodegeneration

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Deciphering the mechanisms of development of neurodegeneration at the presymptomatic stage is an urgent task. It’s solving allows optimizing the methods of early diagnostics and prevention of Alzheimer’s disease (AD). Goal of the study: to study the features of neurogenesis in brain neurogenic niches in experimental Alzheimer’s disease at the presymptomatic stage of neurodegeneration. Modeling of AD in vivo was carried out in experimental animals (male mice, C57BL/6, 8 months old) as follows: the control group, n = 30, animals were injected with 2 µl of a 0.9% NaCl solution in the CA1 field of the hippocampus; the experimental group, n = 30, animals were injected with a 1M solution of oligomerized beta-amyloid 25–35 (Aβ25–35) (2 μl bilaterally). Cognitive impairments have been assessed with the passive avoidance task (PAT). For immunohistochemical studies, we identified the subgranular zone of the hippocampus (SGZ) and the subventricular zone (SVZ) in frozen sections of the brain tissue. We have analyzed the expression of markers – Nestin, Pax6, NeuroD1, VEGFR2, as well as apoptosis (TUNEL protocol) in neurogenic niches. In the period preceding the manifestation of cognitive dysfunction (from 9 to 17 days after intrahippocampal administration of Aβ25–35), we registered multidirectional changes in the expression of markers of neurogenesis, neoangiogenesis and the severity of apoptosis in the SGZ of the hippocampus and in the SVZ. At 9th day since the beginning of development of Alzheimer’s type neurodegeneration, we found elevated expression of Pax6 and VEGFR2 in the SGZ and higher number of Nestin+ cells in the SVZ. Subsequent application of the PAT protocol with the presentation of an aversive stimulus (day 10) or the corresponding context (days 11 and 17) resulted in dynamic changes in the expression of cell markers at different stages of neurogenesis. In sum, аt the presymptomatic stage of the Alzheimer’s type neurodegeneration, SGZ and SVZ show signs of aberrant neurogenesis associated with a disruption in the pool of stem and progenitor cells and suppression of the production of neuroblasts/immature neurons in the period preceding the evident cognitive dysfunction.

About the authors

A. S. Averchuk

Research Center of Neurology

Author for correspondence.
Email: antonaverchuk@yandex.ru
Russia, 125367, Moscow

M. V. Ryazanova

Research Center of Neurology

Email: antonaverchuk@yandex.ru
Russia, 125367, Moscow

N. A. Rozanova

Research Center of Neurology

Email: antonaverchuk@yandex.ru
Russia, 125367, Moscow

N. A. Kolotyeva

Research Center of Neurology

Email: antonaverchuk@yandex.ru
Russia, 125367, Moscow

A. V. Stavrovskaya

Research Center of Neurology

Email: antonaverchuk@yandex.ru
Russia, 125367, Moscow

S. V. Novikova

Research Center of Neurology

Email: antonaverchuk@yandex.ru
Russia, 125367, Moscow

A. B. Salmina

Research Center of Neurology

Email: antonaverchuk@yandex.ru
Russia, 125367, Moscow

References

  1. Аверчук А.С., Рязанова М.В., Баранич Т.И., Ставровская А.В., Розанова Н.А., Новикова С.В., Салмина А.Б. 2023. Нейротоксическое действие бета-амилоида сопровождается изменением митохондриальной динамики и аутофагии нейронов и клеток церебрального эндотелия в экспериментальной модели болезни Альцгеймера. Бюллетень экспер. биол. мед. Т. 175. № 3. С. 291. (Averchuk A.S., Ryazanova M.V., Baranich T.I., Stavrovskaya A.V., Rozanova N.A., Novikova S.V., Salmina A.B. 2023. The neurotoxic effect of beta-amyloid is accompanied with changes in the mitochondrial dynamics and autophagy in neurons and brain endothelial cells in the experimental model of Alzheimer’s disease. Bulletin Exper. Biol. Med. V. 175. № 3. P. 291.) https://doi.org/10.47056/0365-9615-2023-175-3-291-297
  2. Иноземцев А.Н. 2013. Анализ природы следа памяти в условной реакции пассивного избегания. Вестник Московского университета. Серия 16. Биология. № 1. С. 3 (Inozemtsev AN. 2013. The analysis of the memory trace nature in passive avoidance response. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. № 1. С. 3.)
  3. Моргун А.В., Осипова Е.Д., Бойцова Е.Б., Шуваев А.Н., Комлева Ю.К., Труфанова Л.В., Вайс Е.Ф., Салмина А.Б. 2019. Астроцит-опосредованные механизмы регуляции нейрогенеза в модели нейрогенной ниши in vitro при действии Aβ1−42. Биомедицинская химия. Т. 65. № 5. С. 366. (Morgun A.V., Osipova E.D., Boytsova E.B., Shuvaev A.N., Komleva Yu.K., Trufanova L.V., Weiss E.F., Salmina A.B. 2019. Astrocyte-mediated regulation of cell development in the model of neurogenic niche in vitro treated with Aβ1-42. Biomed. Chemistry. V. 65. № 5. P. 366.) https://doi.org/10.18097/PBMC20196505366
  4. Рудько А.С., Эфендиева М.Х., Будзинская М.В., Карпилова М.А. 2017. Влияние фактора роста эндотелия сосудов на ангиогенез и нейрогенез. Вестник офтальмологии. Т. 133. № 3. С. 75. (Rud’ko A.S., Efendieva M.Kh., Budzinskaia M.V., Karpilova M.A. 2017. Influence of vascular endothelial growth factor on angiogenesis and neurogenesis. Vestnik Oftalmologii. V. 133. № 3. P. 75). https://doi.org/10.17116/oftalma2017133375-80
  5. Dermon C.R., Zikopoulos B., Panagis L., Harrison E., Lancashire C.L., Mileusnic R., Stewart M.G. 2002. Passive avoidance training enhances cell proliferation in 1-day-old chicks. Eur. J. Neurosci. V. 16. P. 1267. https://doi.org/10.1046/j.1460-9568.2002.02177.x
  6. Esteve D., Molina-Navarro M.M., Giraldo E., Martínez-Varea N., Blanco-Gandia M.C., Rodríguez-Arias M., García-Verdugo J.M., Viña J., Lloret A. 2022. Adult neural stem cell migration is impaired in a mouse model of Alzheimer’s disease. Mol. Neurobiol. V. 59. P. 1168. https://doi.org/10.1007/s12035-021-02620-6
  7. Eu W.Z., Chen Y.J., Chen W.T., Wu K.Y., Tsai C.Y., Cheng S.J., Carter R.N., Huang G.J. 2021. The effect of nerve growth factor on supporting spatial memory depends upon hippocampal cholinergic innervation. Transl. Psychiatry. V. 11. P. 162. https://doi.org/10.1038/s41398-021-01280-3
  8. Fiore M., Triaca V., Amendola T., Tirassa P., Aloe L. 2002. Brain NGF and EGF administration improves passive avoidance response and stimulates brain precursor cells in aged male mice. Physiol. Behav. V. 77. P. 437. https://doi.org/10.1016/s0031-9384(02)00875-2
  9. Jack C.R., Knopman D.S., Jagust W.J., Petersen R.C., Weiner M.W., Aisen P.S., Shaw L.M., Vemuri P., Wiste H.J., Weigand S.D., Lesnick T.G., Pankratz V.S., Donohue M.C., Trojanowski J.Q. 2013. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. V. 12. P. 207. https://doi.org/10.1016/S1474-4422(12)70291-0
  10. Jin K., Zhu Y., Sun Y., Mao X.O., Xie L., Greenberg D.A. 2002. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA. V. 99. P. 11946. https://doi.org/10.1073/pnas.182296499
  11. López-Toledano M.A., Shelanski M.L. 2004. Neurogenic effect of beta-amyloid peptide in the development of neural stem cells. J. Neurosci. V. 24. P. 5439. https://doi.org/10.1523/JNEUROSCI.0974-04.2004
  12. López-Toledano M.A., Shelanski M.L. 2007. Increased neurogenesis in young transgenic mice overexpressing human APP (Sw, Ind). J. Alzheimers Dis. V. 12. P. 229. https://doi.org/10.3233/jad-2007-12304
  13. Ning W.J., Lv R.J., Xu N., Hou X.Y., Shen C., Guo Y.L., Fan Z.Y., Cao N., Liu X.P. 2021. Lycopene-loaded microemulsion regulates neurogenesis in rats with Aβ-induced Alzheimer’s disease rats based on the Wnt/β-catenin pathway. Neural Plast. V. 6. P. e5519330. https://doi.org/10.1155/2021/5519330
  14. Ögren S.O., Stiedl O. 2013. Passive avoidance. Encyclopedia of psychopharmacology. V. 3. P. 960. https://doi.org/10.1007/978-3-642-27772-6_160-2
  15. Polis B., Srikanth K.D., Gurevich V., Bloch N., Gil-Henn H., Samson A.O. 2020. Arginase inhibition supports survival and differentiation of neuronal precursors in adult Alzheimer’s disease mice. Int. J. Mol. Sci. V. 21. P. 1133. https://doi.org/10.3390/ijms21031133
  16. Riddle D.R., Lichtenwalner R.J. 2007. Neurogenesis in the adult and aging brain. brain aging: models, methods, and mechanisms. V. 131. https://doi.org/10.1016/j.conb.2018.07.006
  17. Roybon L., Hjalt T., Stott S., Guillemot F., Li J.Y., Brundin P. 2009. Neurogenin2 directs granule neuroblast production and amplification while NeuroD1 specifies neuronal fate during hippocampal neurogenesis. PLoS One. V. 4. P. e4779. https://doi.org/10.1371/journal.pone.0004779
  18. Scopa C., Marrocco F., Latina V., Ruggeri F., Corvaglia V., La Regina F., Ammassari-Teule M., Middei S., Amadoro G., Meli G., Scardigli R., Cattaneo A. 2020. Impaired adult neurogenesis is an early event in Alzheimer’s disease neurodegeneration, mediated by intracellular Aβ oligomers. Cell Death Differ. V. 27. P. 934. https://doi.org/10.1038/s41418-019-0409-3
  19. Scopa C., Marrocco F., Latina V., Ruggeri F., Corvaglia V., La Regina F., Ammassari-Teule M., Middei S., Amadoro G., Meli G., Scardigli R., Cattaneo A. 2020. Impaired adult neurogenesis is an early event in Alzheimer’s disease neurodegeneration, mediated by intracellular Aβ oligomers. Cell Death Differ. V. 27. P. 934. https://doi.org/10.1038/s41418-019-0409-3
  20. Steinman J., Sun H.S., Feng Z.P. 2021. Microvascular alterations in Alzheimer’s disease. Front. Cell. Neurosci. V. 14. P. 618 986. https://doi.org/10.3389/fncel.2020.618986

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (187KB)
4.

Download (35KB)
5.

Download (183KB)

Copyright (c) 2023 А.С. Аверчук, М.В. Рязанова, Н.А. Розанова, Н.А. Колотьева, А.В. Ставровская, С.В. Новикова, А.Б. Салмина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies