Conservation Laws, Symmetries, and Line Soliton Solutions of Generalized KP and Boussinesq Equations with p-Power Nonlinearities in Two Dimensions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Nonlinear generalizations of integrable equations in one dimension, such as the Korteweg–de Vries and Boussinesq equations with p-power nonlinearities, arise in many physical applications and are interesting from the analytic standpoint because of their critical behavior. We study analogous nonlinear p-power generalizations of the integrable Kadomtsev–Petviashvili and Boussinesq equations in two dimensions. For all p ≠ 0, we present a Hamiltonian formulation of these two generalized equations. We derive all Lie symmetries including those that exist for special powers p ≠ 0. We use Noether’s theorem to obtain conservation laws arising from the variational Lie symmetries. Finally, we obtain explicit line soliton solutions for all powers p > 0 and discuss some of their properties.

作者简介

S. Anco

Brock University

Email: marialuz.gandarias@uca.es
加拿大, St. Catharines

M. Gandarias

Cadiz University

编辑信件的主要联系方式.
Email: marialuz.gandarias@uca.es
西班牙, Cadiz

E. Recio

Cadiz University

Email: marialuz.gandarias@uca.es
西班牙, Cadiz

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018