Conservation Laws, Symmetries, and Line Soliton Solutions of Generalized KP and Boussinesq Equations with p-Power Nonlinearities in Two Dimensions


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Nonlinear generalizations of integrable equations in one dimension, such as the Korteweg–de Vries and Boussinesq equations with p-power nonlinearities, arise in many physical applications and are interesting from the analytic standpoint because of their critical behavior. We study analogous nonlinear p-power generalizations of the integrable Kadomtsev–Petviashvili and Boussinesq equations in two dimensions. For all p ≠ 0, we present a Hamiltonian formulation of these two generalized equations. We derive all Lie symmetries including those that exist for special powers p ≠ 0. We use Noether’s theorem to obtain conservation laws arising from the variational Lie symmetries. Finally, we obtain explicit line soliton solutions for all powers p > 0 and discuss some of their properties.

Sobre autores

S. Anco

Brock University

Email: marialuz.gandarias@uca.es
Canadá, St. Catharines

M. Gandarias

Cadiz University

Autor responsável pela correspondência
Email: marialuz.gandarias@uca.es
Espanha, Cadiz

E. Recio

Cadiz University

Email: marialuz.gandarias@uca.es
Espanha, Cadiz

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018