Fractional Hamiltonian Systems with Locally Defined Potentials


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study solutions of the nonperiodic fractional Hamiltonian systems

\({ - _t}D_\infty ^\alpha {(_{ - \infty }}D_\infty ^\alpha x(t)) - L(t)x(t) + \nabla W(t,x(t)) = 0,x \in {H^\alpha }(R,{R^N}),\)
where α ∈ (1/2, 1], t ∈ R, L(t) ∈ C(R,\({R^{{N^2}}}\) ), and −∞Dtα t and tDα∞ are the respective left and right Liouville–Weyl fractional derivatives of order α on the whole axis R. Using a new symmetric mountain pass theorem established by Kajikia, we prove the existence of infinitely many solutions for this system in the case where the matrix L(t) is not necessarily coercive nor uniformly positive definite and W(t, x) is defined only locally near the coordinate origin x = 0. The proved theorems significantly generalize and improve previously obtained results. We also give several illustrative examples.

作者简介

A. Benhassine

Department of Mathematics

编辑信件的主要联系方式.
Email: ab.hassine@yahoo.com
突尼斯, Monastir

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018