🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Fractional Hamiltonian Systems with Locally Defined Potentials


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study solutions of the nonperiodic fractional Hamiltonian systems

\({ - _t}D_\infty ^\alpha {(_{ - \infty }}D_\infty ^\alpha x(t)) - L(t)x(t) + \nabla W(t,x(t)) = 0,x \in {H^\alpha }(R,{R^N}),\)
where α ∈ (1/2, 1], t ∈ R, L(t) ∈ C(R,\({R^{{N^2}}}\) ), and −∞Dtα t and tDα∞ are the respective left and right Liouville–Weyl fractional derivatives of order α on the whole axis R. Using a new symmetric mountain pass theorem established by Kajikia, we prove the existence of infinitely many solutions for this system in the case where the matrix L(t) is not necessarily coercive nor uniformly positive definite and W(t, x) is defined only locally near the coordinate origin x = 0. The proved theorems significantly generalize and improve previously obtained results. We also give several illustrative examples.

Sobre autores

A. Benhassine

Department of Mathematics

Autor responsável pela correspondência
Email: ab.hassine@yahoo.com
Tunísia, Monastir

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018