Quantization of the Kadomtsev–Petviashvili equation
- Авторы: Kozlowski K.1,2,3, Sklyanin E.K.4, Torrielli A.4
-
Учреждения:
- Université de Lyon
- École Normale Supérieure de Lyon
- Laboratoire de Physique
- Department of Mathematics
- Выпуск: Том 192, № 2 (2017)
- Страницы: 1162-1183
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171356
- DOI: https://doi.org/10.1134/S0040577917080074
- ID: 171356
Цитировать
Аннотация
We propose a quantization of the Kadomtsev–Petviashvili equation on a cylinder equivalent to an infinite system of nonrelativistic one-dimensional bosons with the masses m = 1, 2,.... The Hamiltonian is Galilei-invariant and includes the split and merge terms\(\Psi _{{m_1}}^\dag \Psi _{{m_2}}^\dag {\Psi _{{m_1} + {m_2}}}\)and\(\Psi _{{m_1} + {m_2}}^\dag {\Psi _{{m_1}}}{\Psi _{{m_2}}}\)for all combinations of particles with masses m1, m2, and m1 + m2for a special choice of coupling constants. We construct the Bethe eigenfunctions for the model and verify the consistency of the coordinate Bethe ansatz and hence the quantum integrability of the model up to the mass M=8 sector.
Ключевые слова
Об авторах
K. Kozlowski
Université de Lyon; École Normale Supérieure de Lyon; Laboratoire de Physique
Email: evgeny.sklyanin@york.ac.uk
Франция, Lyon; Lyon; Lyon
E. Sklyanin
Department of Mathematics
Автор, ответственный за переписку.
Email: evgeny.sklyanin@york.ac.uk
Великобритания, York
A. Torrielli
Department of Mathematics
Email: evgeny.sklyanin@york.ac.uk
Великобритания, Guildford
Дополнительные файлы
