Quantization of the Kadomtsev–Petviashvili equation


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We propose a quantization of the Kadomtsev–Petviashvili equation on a cylinder equivalent to an infinite system of nonrelativistic one-dimensional bosons with the masses m = 1, 2,.... The Hamiltonian is Galilei-invariant and includes the split and merge terms\(\Psi _{{m_1}}^\dag \Psi _{{m_2}}^\dag {\Psi _{{m_1} + {m_2}}}\)and\(\Psi _{{m_1} + {m_2}}^\dag {\Psi _{{m_1}}}{\Psi _{{m_2}}}\)for all combinations of particles with masses m1, m2, and m1 + m2for a special choice of coupling constants. We construct the Bethe eigenfunctions for the model and verify the consistency of the coordinate Bethe ansatz and hence the quantum integrability of the model up to the mass M=8 sector.

About the authors

K. Kozlowski

Université de Lyon; École Normale Supérieure de Lyon; Laboratoire de Physique

Email: evgeny.sklyanin@york.ac.uk
France, Lyon; Lyon; Lyon

E. K. Sklyanin

Department of Mathematics

Author for correspondence.
Email: evgeny.sklyanin@york.ac.uk
United Kingdom, York

A. Torrielli

Department of Mathematics

Email: evgeny.sklyanin@york.ac.uk
United Kingdom, Guildford

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.