Quantization of the Kadomtsev–Petviashvili equation
- Authors: Kozlowski K.1,2,3, Sklyanin E.K.4, Torrielli A.4
-
Affiliations:
- Université de Lyon
- École Normale Supérieure de Lyon
- Laboratoire de Physique
- Department of Mathematics
- Issue: Vol 192, No 2 (2017)
- Pages: 1162-1183
- Section: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171356
- DOI: https://doi.org/10.1134/S0040577917080074
- ID: 171356
Cite item
Abstract
We propose a quantization of the Kadomtsev–Petviashvili equation on a cylinder equivalent to an infinite system of nonrelativistic one-dimensional bosons with the masses m = 1, 2,.... The Hamiltonian is Galilei-invariant and includes the split and merge terms\(\Psi _{{m_1}}^\dag \Psi _{{m_2}}^\dag {\Psi _{{m_1} + {m_2}}}\)and\(\Psi _{{m_1} + {m_2}}^\dag {\Psi _{{m_1}}}{\Psi _{{m_2}}}\)for all combinations of particles with masses m1, m2, and m1 + m2for a special choice of coupling constants. We construct the Bethe eigenfunctions for the model and verify the consistency of the coordinate Bethe ansatz and hence the quantum integrability of the model up to the mass M=8 sector.
About the authors
K. Kozlowski
Université de Lyon; École Normale Supérieure de Lyon; Laboratoire de Physique
Email: evgeny.sklyanin@york.ac.uk
France, Lyon; Lyon; Lyon
E. K. Sklyanin
Department of Mathematics
Author for correspondence.
Email: evgeny.sklyanin@york.ac.uk
United Kingdom, York
A. Torrielli
Department of Mathematics
Email: evgeny.sklyanin@york.ac.uk
United Kingdom, Guildford
Supplementary files
