Confluence of hypergeometric functions and integrable hydrodynamic-type systems
- 作者: Kodama Y.1, Konopelchenko B.G.2
-
隶属关系:
- Department of Mathematics
- Dipartimento di Matematica e Fisica “Ennio de Giorgi,”
- 期: 卷 188, 编号 3 (2016)
- 页面: 1334-1357
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170757
- DOI: https://doi.org/10.1134/S0040577916090051
- ID: 170757
如何引用文章
详细
We construct a new class of integrable hydrodynamic-type systems governing the dynamics of the critical points of confluent Lauricella-type functions defined on finite-dimensional Grassmannian Gr(2, n), i.e., on the set of 2×n matrices of rank two. These confluent functions satisfy certain degenerate Euler–Poisson–Darboux equations. We show that in the general case, a hydrodynamic-type system associated with the confluent Lauricella function is an integrable and nondiagonalizable quasilinear system of a Jordan matrix form. We consider the cases of the Grassmannians Gr(2, 5) for two-component systems and Gr(2, 6) for three-component systems in detail.
作者简介
Y. Kodama
Department of Mathematics
编辑信件的主要联系方式.
Email: kodama@math.ohio-state.edu
美国, Columbus
B. Konopelchenko
Dipartimento di Matematica e Fisica “Ennio de Giorgi,”
Email: kodama@math.ohio-state.edu
意大利, Lecce
补充文件
