Confluence of hypergeometric functions and integrable hydrodynamic-type systems


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We construct a new class of integrable hydrodynamic-type systems governing the dynamics of the critical points of confluent Lauricella-type functions defined on finite-dimensional Grassmannian Gr(2, n), i.e., on the set of 2×n matrices of rank two. These confluent functions satisfy certain degenerate Euler–Poisson–Darboux equations. We show that in the general case, a hydrodynamic-type system associated with the confluent Lauricella function is an integrable and nondiagonalizable quasilinear system of a Jordan matrix form. We consider the cases of the Grassmannians Gr(2, 5) for two-component systems and Gr(2, 6) for three-component systems in detail.

作者简介

Y. Kodama

Department of Mathematics

编辑信件的主要联系方式.
Email: kodama@math.ohio-state.edu
美国, Columbus

B. Konopelchenko

Dipartimento di Matematica e Fisica “Ennio de Giorgi,”

Email: kodama@math.ohio-state.edu
意大利, Lecce

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016