Zeros of combinations of Bessel functions and the mean charge of graphene nanodots
- Авторы: Beneventano C.G.1, Fialkovsky I.V.2,3, Santangelo E.M.1
-
Учреждения:
- Departamento de Física
- CMCC–Universidade Federal do ABC
- Department of Theoretical Physics
- Выпуск: Том 187, № 1 (2016)
- Страницы: 497-510
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170515
- DOI: https://doi.org/10.1134/S004057791604005X
- ID: 170515
Цитировать
Аннотация
We establish some properties of the zeros of sums and differences of contiguous Bessel functions of the first kind. As a by-product, we also prove that the zeros of the derivatives of Bessel functions of the first kind of different orders are interlaced the same way as the zeros of the Bessel functions themselves. As a physical motivation, we consider gated graphene nanodots subject to Berry–Mondragon boundary conditions. We determine the allowed energy levels and calculate the mean charge at zero temperature. We discuss its dependence on the gate (chemical) potential in detail and also comment on the effect of temperature.
Ключевые слова
Об авторах
C. Beneventano
Departamento de Física
Email: ifialk@gmail.com
Аргентина, La Plata
I. Fialkovsky
CMCC–Universidade Federal do ABC; Department of Theoretical Physics
Автор, ответственный за переписку.
Email: ifialk@gmail.com
Бразилия, Santo André, S. P.; St. Petersburg
E. Santangelo
Departamento de Física
Email: ifialk@gmail.com
Аргентина, La Plata
Дополнительные файлы
