Zeros of combinations of Bessel functions and the mean charge of graphene nanodots
- 作者: Beneventano C.G.1, Fialkovsky I.V.2,3, Santangelo E.M.1
-
隶属关系:
- Departamento de Física
- CMCC–Universidade Federal do ABC
- Department of Theoretical Physics
- 期: 卷 187, 编号 1 (2016)
- 页面: 497-510
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170515
- DOI: https://doi.org/10.1134/S004057791604005X
- ID: 170515
如何引用文章
详细
We establish some properties of the zeros of sums and differences of contiguous Bessel functions of the first kind. As a by-product, we also prove that the zeros of the derivatives of Bessel functions of the first kind of different orders are interlaced the same way as the zeros of the Bessel functions themselves. As a physical motivation, we consider gated graphene nanodots subject to Berry–Mondragon boundary conditions. We determine the allowed energy levels and calculate the mean charge at zero temperature. We discuss its dependence on the gate (chemical) potential in detail and also comment on the effect of temperature.
作者简介
C. Beneventano
Departamento de Física
Email: ifialk@gmail.com
阿根廷, La Plata
I. Fialkovsky
CMCC–Universidade Federal do ABC; Department of Theoretical Physics
编辑信件的主要联系方式.
Email: ifialk@gmail.com
巴西, Santo André, S. P.; St. Petersburg
E. Santangelo
Departamento de Física
Email: ifialk@gmail.com
阿根廷, La Plata
补充文件
