Zeros of combinations of Bessel functions and the mean charge of graphene nanodots


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We establish some properties of the zeros of sums and differences of contiguous Bessel functions of the first kind. As a by-product, we also prove that the zeros of the derivatives of Bessel functions of the first kind of different orders are interlaced the same way as the zeros of the Bessel functions themselves. As a physical motivation, we consider gated graphene nanodots subject to Berry–Mondragon boundary conditions. We determine the allowed energy levels and calculate the mean charge at zero temperature. We discuss its dependence on the gate (chemical) potential in detail and also comment on the effect of temperature.

作者简介

C. Beneventano

Departamento de Física

Email: ifialk@gmail.com
阿根廷, La Plata

I. Fialkovsky

CMCC–Universidade Federal do ABC; Department of Theoretical Physics

编辑信件的主要联系方式.
Email: ifialk@gmail.com
巴西, Santo André, S. P.; St. Petersburg

E. Santangelo

Departamento de Física

Email: ifialk@gmail.com
阿根廷, La Plata

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016