Superintegrable Systems with Algebraic and Rational Integrals of Motion
- Авторлар: Tsiganov A.V.1
-
Мекемелер:
- St. Petersburg State University
- Шығарылым: Том 199, № 2 (2019)
- Беттер: 659-674
- Бөлім: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/172235
- DOI: https://doi.org/10.1134/S0040577919050040
- ID: 172235
Дәйексөз келтіру
Аннотация
We consider superintegrable deformations of the Kepler problem and the harmonic oscillator on the plane and also superintegrable metrics on a two-dimensional sphere, for which the additional integral of motion is either an algebraic or a rational function of momenta. According to Euler, these integrals of motion take the simplest form in terms of affine coordinates of elliptic curve divisors.
Авторлар туралы
A. Tsiganov
St. Petersburg State University
Хат алмасуға жауапты Автор.
Email: andrey.tsiganov@gmail.com
Ресей, St. Petersburg
Қосымша файлдар
