Superintegrable Systems with Algebraic and Rational Integrals of Motion
- 作者: Tsiganov A.V.1
-
隶属关系:
- St. Petersburg State University
- 期: 卷 199, 编号 2 (2019)
- 页面: 659-674
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/172235
- DOI: https://doi.org/10.1134/S0040577919050040
- ID: 172235
如何引用文章
详细
We consider superintegrable deformations of the Kepler problem and the harmonic oscillator on the plane and also superintegrable metrics on a two-dimensional sphere, for which the additional integral of motion is either an algebraic or a rational function of momenta. According to Euler, these integrals of motion take the simplest form in terms of affine coordinates of elliptic curve divisors.
作者简介
A. Tsiganov
St. Petersburg State University
编辑信件的主要联系方式.
Email: andrey.tsiganov@gmail.com
俄罗斯联邦, St. Petersburg
补充文件
