Phase Space of Collective Variables and the Zubarev Transition Function


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We study the completeness of the transition function J(ρ − \(\hat \rho \)) to the infinite set of collective variables {ρk}. Zubarev first introduced this transition function in statistical physics. We propose complete forms for the Jacobians of transitions to the corresponding sets of collective variables in problems in the theory of electrolyte solutions, the Ising model, and the first-order phase transition. We analyze the methods and calculation results in the phase spaces of collective variables of the partition functions of these systems.

作者简介

I. Yukhnovskii

Institute for Condensed Matter Physics

编辑信件的主要联系方式.
Email: yukhn@icmp.lviv.ua
乌克兰, Lviv

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018