Phase Space of Collective Variables and the Zubarev Transition Function
- Авторы: Yukhnovskii I.R.1
-
Учреждения:
- Institute for Condensed Matter Physics
- Выпуск: Том 194, № 2 (2018)
- Страницы: 189-219
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171623
- DOI: https://doi.org/10.1134/S0040577918020022
- ID: 171623
Цитировать
Аннотация
We study the completeness of the transition function J(ρ − \(\hat \rho \)) to the infinite set of collective variables {ρk}. Zubarev first introduced this transition function in statistical physics. We propose complete forms for the Jacobians of transitions to the corresponding sets of collective variables in problems in the theory of electrolyte solutions, the Ising model, and the first-order phase transition. We analyze the methods and calculation results in the phase spaces of collective variables of the partition functions of these systems.
Об авторах
I. Yukhnovskii
Institute for Condensed Matter Physics
Автор, ответственный за переписку.
Email: yukhn@icmp.lviv.ua
Украина, Lviv
Дополнительные файлы
