Globally superintegrable Hamiltonian systems
- Autores: Kurov A.V.1, Sardanashvily G.A.1
-
Afiliações:
- Lomonosov Moscow State University
- Edição: Volume 191, Nº 3 (2017)
- Páginas: 811-826
- Seção: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171255
- DOI: https://doi.org/10.1134/S0040577917060022
- ID: 171255
Citar
Resumo
The generalization of the Mishchenko–Fomenko theorem for symplectic superintegrable systems to the case of an arbitrary, not necessarily compact, invariant submanifold allows giving a global description of a superintegrable Hamiltonian system, which can be split into several nonequivalent globally superintegrable systems on nonoverlapping open submanifolds of the symplectic phase manifold having both compact and noncompact invariant submanifolds. A typical example of such a composition of globally superintegrable systems is motion in a centrally symmetric field, in particular, the two-dimensional Kepler problem.
Sobre autores
A. Kurov
Lomonosov Moscow State University
Autor responsável pela correspondência
Email: kurov.aleksandr@physics.msu.ru
Rússia, Moscow
G. Sardanashvily
Lomonosov Moscow State University
Email: kurov.aleksandr@physics.msu.ru
Rússia, Moscow
Arquivos suplementares
