Globally superintegrable Hamiltonian systems
- Авторы: Kurov A.V.1, Sardanashvily G.A.1
-
Учреждения:
- Lomonosov Moscow State University
- Выпуск: Том 191, № 3 (2017)
- Страницы: 811-826
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171255
- DOI: https://doi.org/10.1134/S0040577917060022
- ID: 171255
Цитировать
Аннотация
The generalization of the Mishchenko–Fomenko theorem for symplectic superintegrable systems to the case of an arbitrary, not necessarily compact, invariant submanifold allows giving a global description of a superintegrable Hamiltonian system, which can be split into several nonequivalent globally superintegrable systems on nonoverlapping open submanifolds of the symplectic phase manifold having both compact and noncompact invariant submanifolds. A typical example of such a composition of globally superintegrable systems is motion in a centrally symmetric field, in particular, the two-dimensional Kepler problem.
Об авторах
A. Kurov
Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: kurov.aleksandr@physics.msu.ru
Россия, Moscow
G. Sardanashvily
Lomonosov Moscow State University
Email: kurov.aleksandr@physics.msu.ru
Россия, Moscow
Дополнительные файлы
