Equation for one-loop divergences in two dimensions and its application to higher-spin fields
- Авторлар: Popova H.P.1, Stepanyantz K.V.2
-
Мекемелер:
- Skobeltsyn Institute of Nuclear Physics
- Physics Faculty
- Шығарылым: Том 187, № 3 (2016)
- Беттер: 888-898
- Бөлім: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170649
- DOI: https://doi.org/10.1134/S0040577916060076
- ID: 170649
Дәйексөз келтіру
Аннотация
We derive a simple formula for one-loop logarithmic divergences on the background of a two-dimensional curved space–time for theories in which the second variation of the action is a nonminimal second-order operator with small nonminimal terms. In particular, this formula allows calculating terms that are integrals of total derivatives. As an application of the result, we obtain one-loop divergences for higher-spin fields on a constant-curvature background in a nonminimal gauge that depends on two parameters. By an explicit calculation, we demonstrate that with the considered accuracy, the result is gauge independent and, moreover, spin independent for spins s ≥ 3.
Негізгі сөздер
Авторлар туралы
H. Popova
Skobeltsyn Institute of Nuclear Physics
Email: stepan@m9com.ru
Ресей, Moscow
K. Stepanyantz
Physics Faculty
Хат алмасуға жауапты Автор.
Email: stepan@m9com.ru
Ресей, Moscow
Қосымша файлдар
