Equation for one-loop divergences in two dimensions and its application to higher-spin fields


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We derive a simple formula for one-loop logarithmic divergences on the background of a two-dimensional curved space–time for theories in which the second variation of the action is a nonminimal second-order operator with small nonminimal terms. In particular, this formula allows calculating terms that are integrals of total derivatives. As an application of the result, we obtain one-loop divergences for higher-spin fields on a constant-curvature background in a nonminimal gauge that depends on two parameters. By an explicit calculation, we demonstrate that with the considered accuracy, the result is gauge independent and, moreover, spin independent for spins s ≥ 3.

作者简介

H. Popova

Skobeltsyn Institute of Nuclear Physics

Email: stepan@m9com.ru
俄罗斯联邦, Moscow

K. Stepanyantz

Physics Faculty

编辑信件的主要联系方式.
Email: stepan@m9com.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016