Some matrix functional equations
- Авторы: Bruschi M.1,2, Calogero F.1,2
-
Учреждения:
- Physics Department
- Istituto Nazionale di Fisica Nucleare
- Выпуск: Том 189, № 1 (2016)
- Страницы: 1411-1429
- Раздел: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170785
- DOI: https://doi.org/10.1134/S0040577916100020
- ID: 170785
Цитировать
Аннотация
We investigate the pair of matrix functional equations G(x)F(y) = G(xy) and G(x)G(y) = F(y/x), featuring the two independent scalar variables x and y and the two N×N matrices F(z) andG(z) (with N an arbitrary positive integer and the elements of these two matrices functions of the scalar variable z). We focus on the simplest class of solutions, i.e., on matrices all of whose elements are analytic functions of the independent variable. While in the scalar (N = 1) case this pair of functional equations only possess altogether trivial constant solutions, in the matrix (N > 1) case there are nontrivial solutions. These solutions satisfy the additional pair of functional equations F(x)G(y) = G(y/x) andF(x)F(y) = F(xy), and an endless hierarchy of other functional equations featuring more than two independent variables.
Ключевые слова
Об авторах
M. Bruschi
Physics Department; Istituto Nazionale di Fisica Nucleare
Автор, ответственный за переписку.
Email: mario.bruschi@roma1.infn.it
Италия, Rome; Rome
F. Calogero
Physics Department; Istituto Nazionale di Fisica Nucleare
Email: mario.bruschi@roma1.infn.it
Италия, Rome; Rome
Дополнительные файлы
