Some matrix functional equations
- 作者: Bruschi M.1,2, Calogero F.1,2
-
隶属关系:
- Physics Department
- Istituto Nazionale di Fisica Nucleare
- 期: 卷 189, 编号 1 (2016)
- 页面: 1411-1429
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/170785
- DOI: https://doi.org/10.1134/S0040577916100020
- ID: 170785
如何引用文章
详细
We investigate the pair of matrix functional equations G(x)F(y) = G(xy) and G(x)G(y) = F(y/x), featuring the two independent scalar variables x and y and the two N×N matrices F(z) andG(z) (with N an arbitrary positive integer and the elements of these two matrices functions of the scalar variable z). We focus on the simplest class of solutions, i.e., on matrices all of whose elements are analytic functions of the independent variable. While in the scalar (N = 1) case this pair of functional equations only possess altogether trivial constant solutions, in the matrix (N > 1) case there are nontrivial solutions. These solutions satisfy the additional pair of functional equations F(x)G(y) = G(y/x) andF(x)F(y) = F(xy), and an endless hierarchy of other functional equations featuring more than two independent variables.
作者简介
M. Bruschi
Physics Department; Istituto Nazionale di Fisica Nucleare
编辑信件的主要联系方式.
Email: mario.bruschi@roma1.infn.it
意大利, Rome; Rome
F. Calogero
Physics Department; Istituto Nazionale di Fisica Nucleare
Email: mario.bruschi@roma1.infn.it
意大利, Rome; Rome
补充文件
