Chebyshev Polynomials and the Proper Decomposition of Functions


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study the equivalence property of scalar products, based on which we can find the rows of the Chebyshev polynomial sets. For each function in the space \(\mathcal{L}_g^2\), the approximation by a row of Chebyshev polynomials is characterized by the standard deviation. In the case of simple algebras, the sets of standard Chebyshev polynomials ensure rapid convergence of the rows. The presented calculation algorithm produces correct results for the algebras B3, C3, and D3.

Об авторах

V. Lyakhovsky

St. Petersburg State University

Автор, ответственный за переписку.
Email: lyakvladimir@yandex.ru
Россия, St. Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).