Chebyshev Polynomials and the Proper Decomposition of Functions
- 作者: Lyakhovsky V.D.1
-
隶属关系:
- St. Petersburg State University
- 期: 卷 200, 编号 2 (2019)
- 页面: 1147-1157
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/172378
- DOI: https://doi.org/10.1134/S0040577919080075
- ID: 172378
如何引用文章
详细
We study the equivalence property of scalar products, based on which we can find the rows of the Chebyshev polynomial sets. For each function in the space \(\mathcal{L}_g^2\), the approximation by a row of Chebyshev polynomials is characterized by the standard deviation. In the case of simple algebras, the sets of standard Chebyshev polynomials ensure rapid convergence of the rows. The presented calculation algorithm produces correct results for the algebras B3, C3, and D3.
作者简介
V. Lyakhovsky
St. Petersburg State University
编辑信件的主要联系方式.
Email: lyakvladimir@yandex.ru
俄罗斯联邦, St. Petersburg
补充文件
