Conformally Invariant Elliptic Liouville Equation and Its Symmetry-Preserving Discretization
- Authors: Levi D.1,2, Martina L.1,2, Winternitz P.3
-
Affiliations:
- Dipartimento di Matematica e Fisica
- Instituto Nazionale di Fisica Nucleare
- Département de Mathématiques et de Statistique and Centre de Recherches Mathématiques
- Issue: Vol 196, No 3 (2018)
- Pages: 1307-1319
- Section: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171913
- DOI: https://doi.org/10.1134/S0040577918090052
- ID: 171913
Cite item
Abstract
The symmetry algebra of the real elliptic Liouville equation is an infinite-dimensional loop algebra with the simple Lie algebra o(3, 1) as its maximal finite-dimensional subalgebra. The entire algebra generates the conformal group of the Euclidean plane E2. This infinite-dimensional algebra distinguishes the elliptic Liouville equation from the hyperbolic one with its symmetry algebra that is the direct sum of two Virasoro algebras. Following a previously developed discretization procedure, we present a difference scheme that is invariant under the group O(3, 1) and has the elliptic Liouville equation in polar coordinates as its continuous limit. The lattice is a solution of an equation invariant under O(3, 1) and is itself invariant under a subgroup of O(3, 1), namely, the O(2) rotations of the Euclidean plane.
About the authors
D. Levi
Dipartimento di Matematica e Fisica; Instituto Nazionale di Fisica Nucleare
Author for correspondence.
Email: Decio.Levi@roma3.infn.it
Italy, Rome; Rome
L. Martina
Dipartimento di Matematica e Fisica; Instituto Nazionale di Fisica Nucleare
Email: Decio.Levi@roma3.infn.it
Italy, Lecce; Lecce
P. Winternitz
Département de Mathématiques et de Statistique and Centre de Recherches Mathématiques
Email: Decio.Levi@roma3.infn.it
Canada, Montréal, QC
Supplementary files
