Conformally Invariant Elliptic Liouville Equation and Its Symmetry-Preserving Discretization
- 作者: Levi D.1,2, Martina L.1,2, Winternitz P.3
-
隶属关系:
- Dipartimento di Matematica e Fisica
- Instituto Nazionale di Fisica Nucleare
- Département de Mathématiques et de Statistique and Centre de Recherches Mathématiques
- 期: 卷 196, 编号 3 (2018)
- 页面: 1307-1319
- 栏目: Article
- URL: https://journals.rcsi.science/0040-5779/article/view/171913
- DOI: https://doi.org/10.1134/S0040577918090052
- ID: 171913
如何引用文章
详细
The symmetry algebra of the real elliptic Liouville equation is an infinite-dimensional loop algebra with the simple Lie algebra o(3, 1) as its maximal finite-dimensional subalgebra. The entire algebra generates the conformal group of the Euclidean plane E2. This infinite-dimensional algebra distinguishes the elliptic Liouville equation from the hyperbolic one with its symmetry algebra that is the direct sum of two Virasoro algebras. Following a previously developed discretization procedure, we present a difference scheme that is invariant under the group O(3, 1) and has the elliptic Liouville equation in polar coordinates as its continuous limit. The lattice is a solution of an equation invariant under O(3, 1) and is itself invariant under a subgroup of O(3, 1), namely, the O(2) rotations of the Euclidean plane.
作者简介
D. Levi
Dipartimento di Matematica e Fisica; Instituto Nazionale di Fisica Nucleare
编辑信件的主要联系方式.
Email: Decio.Levi@roma3.infn.it
意大利, Rome; Rome
L. Martina
Dipartimento di Matematica e Fisica; Instituto Nazionale di Fisica Nucleare
Email: Decio.Levi@roma3.infn.it
意大利, Lecce; Lecce
P. Winternitz
Département de Mathématiques et de Statistique and Centre de Recherches Mathématiques
Email: Decio.Levi@roma3.infn.it
加拿大, Montréal, QC
补充文件
