Conformally Invariant Elliptic Liouville Equation and Its Symmetry-Preserving Discretization


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The symmetry algebra of the real elliptic Liouville equation is an infinite-dimensional loop algebra with the simple Lie algebra o(3, 1) as its maximal finite-dimensional subalgebra. The entire algebra generates the conformal group of the Euclidean plane E2. This infinite-dimensional algebra distinguishes the elliptic Liouville equation from the hyperbolic one with its symmetry algebra that is the direct sum of two Virasoro algebras. Following a previously developed discretization procedure, we present a difference scheme that is invariant under the group O(3, 1) and has the elliptic Liouville equation in polar coordinates as its continuous limit. The lattice is a solution of an equation invariant under O(3, 1) and is itself invariant under a subgroup of O(3, 1), namely, the O(2) rotations of the Euclidean plane.

作者简介

D. Levi

Dipartimento di Matematica e Fisica; Instituto Nazionale di Fisica Nucleare

编辑信件的主要联系方式.
Email: Decio.Levi@roma3.infn.it
意大利, Rome; Rome

L. Martina

Dipartimento di Matematica e Fisica; Instituto Nazionale di Fisica Nucleare

Email: Decio.Levi@roma3.infn.it
意大利, Lecce; Lecce

P. Winternitz

Département de Mathématiques et de Statistique and Centre de Recherches Mathématiques

Email: Decio.Levi@roma3.infn.it
加拿大, Montréal, QC

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018