🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in 2+1 dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form vt = vxvy - x-1y[vy + vx2], where the formal integral x−1 becomes the asymmetric integral \( - \int_x^\infty {dx'} \). We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function f(X, Y) over a parabola in the plane (X, Y) can be expressed in terms of the integrals of f(X, Y) over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.

About the authors

P. G. Grinevich

Landau Institute for Theoretical Physics; Lomonosov Moscow State University; Moscow Institute of Physics and Technology

Author for correspondence.
Email: pgg@landau.ac.ru
Russian Federation, Chernogolovka; Moscow; Dolgoprudny, Moscow Oblast

P. M. Santini

Dipartimento di Fisica; Istituto Nazionale di Fisica Nucleare

Email: pgg@landau.ac.ru
Italy, Rome; Rome

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Pleiades Publishing, Ltd.