An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in 2+1 dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form vt = vxvy - x-1y[vy + vx2], where the formal integral x−1 becomes the asymmetric integral \( - \int_x^\infty {dx'} \). We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function f(X, Y) over a parabola in the plane (X, Y) can be expressed in terms of the integrals of f(X, Y) over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.

Sobre autores

P. Grinevich

Landau Institute for Theoretical Physics; Lomonosov Moscow State University; Moscow Institute of Physics and Technology

Autor responsável pela correspondência
Email: pgg@landau.ac.ru
Rússia, Chernogolovka; Moscow; Dolgoprudny, Moscow Oblast

P. Santini

Dipartimento di Fisica; Istituto Nazionale di Fisica Nucleare

Email: pgg@landau.ac.ru
Itália, Rome; Rome

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016